RAY OPTICS AND OPTICAL INSTRUMENTS

Single Correct Answer Type

1.			object lens and eye le	ns are f_o and f_e respectively, then
	magnification will be don	e by microscope when		
	a) $f_o = f_e$	b) $f_o > f_e$	c) $f_o < f_e$	d) None of these
2.	The length of the tube of	a microscope is 10 cm.	The focal lengths of th	e objective and eye lenses are
	0.5 cm and 1.0 cm. The m	agnifying power of the	microscope is about	
	a) 5	b) 23	c) 166	d) 500
3.	A spectrum is formed by	a prism of dispersive po	ower $'\omega'$. If the angle o	f deviation is ' δ ', then the angular
	dispersion is			
	a) ω/δ	b) δ/ω	c) $1/\omega\delta$	d) $\omega\delta$
4.	Refractive index for a ma	terial for infrared light	is	
	a) Equal to that of ultravi	olet light	b) Less than for t	ıltraviolet light
	c) Equal to that for red co	olour of light	d) Greater than t	hat for ultraviolet light
5.	Figure shows a mixture o	of blue, green and red co	loured rays incident r	ormally on a right angled prism.
	The critical angles of the	material of the prism fo	r red, green and blue	are 46°, 44° and 43° respectively.
	The arrangement will sep	parate		
	N			
	G →			
	44°			
	450			
	45°			
	a) Red colour from blue a	and green	b) Blue colour fro	om red and green
	c) Green colour from red	and blue	d) All the three c	olours
6.	A telescope has an object	ive of focal length 50 cm	n and an eye piece of f	ocal length 5 cm. The least distance
	of distinct vision is 25 cm	. The telescope is focus	sed for distinct vision	on a scale 200 cm away. The
	separation between the o	bjective and the eye-pi	ece is	
	a) 75 cm	b) 60 cm	c) 71 cm	d) 74 cm
7.	Four convergent lenses h	ave focal lengths 100 cr	m, 10 cm, 4 cm and 0.3	cm. For a telescope with maximum
	possible magnification, w	e choose the lenses of f	ocal length	
	a) 100 cm, 0.3 cm	b) 10 cm, 0.3 cm	c) 10 cm, 4 cm	d) 100 cm, 4 cm
8.	With a concave mirror, an	n object is placed at a di	stance x_1 from the pri	ncipal focus, on the principal axis.
	The image is formed at a	distance x_2 from the pr	incipal focus. The foca	l length of the mirror is
		$r_1 + r_2$	$\sqrt{x_1}$	
	a) $x_1 x_2$	b) $\frac{x_1 + x_2}{2}$	c) $\sqrt{\frac{x_1}{x_2}}$	d) $\sqrt{x_1 x_2}$
		4	N	
9.	If two mirrors are kept at		10 Table 10	
	a) 5	b) 6	c) 7	d) 8
10.				placed inside two liquids or
			> μ_3 . A wide, parallel b	eam of light is incident on the lens
	from the left. The lens wi	ll give rise to		

a) A single convergent beam

- b) Two different convergent beams
- c) Two different divergent beams
- d) A convergent and a divergent beam
- 11. A double convex thin lens made of refractive index 1.6 has radii of curvature 15 cm each. The focal length of this lens when immersed in a fluid of refractive index 1.63, is
- b) 125 cm
- c) 250 cm
- d) -407.5 cm
- 12. Let the x z plane be the boundary between two transparent media. Medium 1 in $z \ge 0$ has a refractive index of $\sqrt{2}$ and medium 2 with z < 0 has a refractive index of $\sqrt{3}$. A ray of light in medium 1 given by the vector $\mathbf{A} = 6\sqrt{3}\hat{\mathbf{i}} + 8\sqrt{3}\hat{\mathbf{j}} - 10 \hat{\mathbf{k}}$ is incident on the plane of separation. The angle of refraction in medium 2 is
 - a) 45°

b) 60°

c) 75°

- 13. An object is placed first at infinity and then at 20 cm from the object side focal plane of the convex lens. The two images thus formed are 5 cm apart. The focal length of the lens is
- b) 10 cm
- c) 15 cm
- d) 20 cm
- 14. When the convergent nature of a convex lens will be less as compared with air
 - a) In water
- b) In oil
- c) In both (a) and (b)
- d) None of these

- 15. When a ray of light is incident normally on a surface, then
 - a) Total internal reflection takes place
- b) It passes undeviated

c) It undergoes dispersion

- d) It gets absorbed by the surface
- 16. Correct exposure for a photographic print is 10 seconds at a distance of one metre from a point source of 20 candela. For an equal fogging of the print placed at a distance of 2 m from a 16 candela source, the necessary time for exposure is
 - a) 100 s
- b) 25 s
- c) 50 s
- d) 75 s
- 17. The refractive index of water, glass and diamond are 1.33,1.50,2.40 respectively. The refractive index of diamond relative to water and of glass relative to diamond, respectively are nearly
 - a) 1.80, 0.625
- b) 0.554, 0.625
- c) 1.80, 1.6
- d) 0.554, 1.6
- 18. The focal length of the lens of refractive index ($\mu = 1.5$) in air is 10 cm. If air is replaced by water of $\mu = \frac{4}{3}$, its focal length is
 - a) 20 cm
- b) 30 cm
- c) 40 cm
- d) 25 cm

19. In the given figure, what is the angle of prism?

a) A

b) B

c) C

- 20. A man runs towards a mirror at a speed 15 m/s. The speed of the image relative to the man is
 - a) $15 \, ms^{-1}$
- b) $30 \, ms^{-1}$
- c) $35 \, ms^{-1}$
- d) $20 \, ms^{-1}$

- 21. The aperture of a telescope is made large, because
 - a) To increase the intensity of image
- b) To decrease the intensity of image

c) To have greater magnification

d) To have lesser resolution

22. An object is placed at a point distance x from the focus of a convex lens and its image is formed is I as shown in the figure. The distances x, x' satisfy the relation

- a) $\frac{x+x'}{2}=f$
- b) f = xx'
- c) $x + x' \le 2f$
- d) $x + x' \ge 2f$
- 23. A hypermetropic person has to use a lens of power +5 D to normalize his vision. The near point of the hypermetropic eye is
 - a) 1 m
- b) 1.5 m
- c) 0.5 m
- d) 0.66 m
- 24. Which of the following graphs is the magnification of a real image against the distance from the focus of a concave mirror

25. A 4 cm thick layer of water covers a 6 cm thick glass slab. A coin is placed at the bottom of the slab and is being observed from the air side along the normal to the surface. Find the apparent position of the coin from

- a) 7.0 cm
- b) 8.0 cm
- c) 10 cm
- d) 5 cm
- 26. A light ray is incident upon a prism in minimum deviation position and suffers a deviation of 34°. If the shaded half of the prism is knocked off, the ray will

a) Suffer a deviation of 34°

b) Suffer a deviation of 68°

c) Suffer a deviation of 17°

- d) Not come out of the prism
- 27. When the power of eye lens increases, the defect of vision is produced. The defect is known as
 - a) Shortsightedness
- b) Longsightedness
- c) Colourblindness
- d) None of the above
- 28. For a prism, its refractive index is $\cos \frac{A}{2}$. Then minimum angle of deviation is
 - a) $180^{\circ} A$
- b) $180^{\circ} 2A$
- c) $90^{\circ} A$
- 29. The plane surface of a plano-convex lens of focal length f is silvered. It will behave as
 - a) Plane mirror

- b) Convex mirror of focal length 2 f
- c) Concave mirror of focal length $\frac{I}{2}$
- d) None of the above
- 30. A light bulb is at a depth of D below the surface of water. An opaque disc of radius R is placed on the surface of water just above the bulb. The bulb is not at all seen through the surface of water, then (n =Refractive index of water)
 - a) $R = \frac{D}{\sqrt{n^2 1}}$
- b) $R > \frac{D}{\sqrt{n^2 1}}$ c) $R < \frac{D}{\sqrt{n^2 1}}$
- d) $R = D\sqrt{n^2 1}$

31.	the slab being perpendic	ular to the principal axis of	the mirror. If the radius of	a concave mirror, the faces of f curvature of the mirror is he object from the mirror is
	a) 30 cm	b) 22 cm	c) 42 cm	d) 28 cm
32.	The diameter of the eye-	ball of a normal eye is abou	it 2.5 cm. The power of the	eye lens varies from
	a) 2 D to 10 D	b) 40 D to 32 D	c) 9 D to 8 D	d) 44 D to 40 D
33.	The angular magnification	on of a simple microscope c	an be increased by increas	ing
	a) Focal length of lens	b) Size of object	c) Aperture of lens	d) Power of lens
34.	An astronomical telescop	oe has a converging eye-pie	ece of focal length 5 cm and	objective of focal length 80
	cm. When the final image	e is formed at the least dista	ance of distinct vision (25 o	cm), the separation between
	the two lenses is			
	a) 75.0 cm	b) 80.0 cm	c) 84.2 cm	d) 85.0 cm
35.	Speed of light is maximu	m in		
	a) Water	b) Air	c) Glass	d) Diamond
36.	Radius of curvature of co	oncave mirror is 40cm and	the size of image is twice a	s that of object, then the
	object distance is			
	a) 60 cm	b) 20 cm	c) 40 cm	d) 30 cm
37.	An object is placed at a d	istance of 40 cm in front of	a concave mirror of focal l	ength 20 cm. The nature of
	image is			
	a) Real and inverted and	of same size	b) Virtual and erect and	of same size
	c) Real and erect and of s	same size	d) Virtual and inverted a	and of same size
38.	Figure shows a cubical re	oom ABCD with the wall CI	D as a plane mirror. Each s	ide of the room is 3m. We
	place is camera at the mi	dpoint of the wall AB. At w	hat distance should the car	mera be focused to
	photograph an object pla	aced at A		
	A B			
	3m			
	DC			
	a) 1.5 m	b) 3 m	c) 6 m	d) More than 6 m
39.		water. A ray of light making		0° shines on oil layer. The
		nt ray in water is ($\mu_{oil}=1.4$		
	a) 36.1°	b) 44.5°	c) 26.8°	d) 28.9°
40.		ed to see infrared spectrum		
	a) Rock salt	b) Nicol	c) Flint	d) Crown
41.				100 cm and 2 cm. The moon
		at the eye. If it is looked th	rough the telescope, the a	ngle subtended by the
	moon's image will be			
	a) 100°	b) 50°	c) 25°	d) 10°
42.		l0 cm in front of a plane mi		ne object, 30 cm from the
		age, for what distance mus	. 기구요시는 기업에 있는 이 경기에 가장하는 그 보고 있다면 하는 그리고 그리고 있다. 	22
	a) 20 cm	b) 60 cm	c) 80 cm	d) 40 cm
43.	The magnifying power of			
		e-piece have short focal len		
		e-piece have long focal leng		175
	그렇게 없는 맛있다고 나이를 잃었다고 있는 아이지만 하나 하나 하나 하나 있다.	ng focal length and the eye	프로마스 아이 아이 맛있다면 하다 가장 하는 사이 있었다면 하는 것이 없었다.	
		ort focal length and the eye		1 10 10 10 10 10 10 10 10 10 10 10 10 10
44.		lown on earth's surface fro		
	4.52 37.1	l diameter is 5 mm and the	1700 m	t is 500 <i>nm</i> . The astronaut
	will be able to resolve lin	ear object of the size of abo	out	

a) 0.5 m	b) 5 m	c) 50 m	d) 500 m
A C1: -1- + +	-1- C J: C C	and the design of the second	1 6 :: 3 :1.

45. A ray of light travels from a medium of refractive index μ to air. Its angle of incidence in the medium is i, measured from the normal to the boundary, and its angle of deviation is δ . δ is plotted against i which of the following best represents the resulting curve

- 46. The length of an astronomical telescope for normal vision (relaxed eye) (f_o = focal length of objective lens and f_e = focal length of eye lens) is
 - a) $f_o \times f_e$

- c) $f_o + f_e$
- 47. The graph between sine of angle of refraction $(\sin r)$ in medium 2 and sine of angle of incidence $(\sin i)$ in medium 1 indicates that (tan 36° $\approx \frac{3}{4}$)

- a) Total internal reflection can take place
- b) Total internal reflection cannot take place

c) Any of (a) and (b)

- d) Data is incomplete
- 48. What will be the height of the image when an object of 2mm is placed at a distance 20 cm in front of the axis of a convex mirror of radius of curvature 40 cm?
 - a) 20 mm
- b) 10 mm
- c) 6 mm
- d) 1 mm
- 49. The magnifying power of a simple microscope is 6. The focal length of its lens in metres will be, if least distance of distinct vision is 25 cm
- c) 0.25
- 50. If the luminous intensity of a 100 W unidirectional bulb is 100 candela, then total luminous flux emitted from the bulb is
 - a) 861 lumen
- b) 986 lumen
- c) 1256 lumen
- d) 1561 lumen
- 51. A parallel beam of light emerges from the opposite surface of the sphere when a point source of light lies at the surface of the sphere. The refractive index of the sphere is

- 52. A prism of certain angles deviates the red and blue rays by 8° and 12° respectively. Another prism of the same angle deviates the red and blue rays by 10° respectively. The prisms are small angled and made of different materials. The dispersive powers of the materials of the prism are in the ratio
 - a) 5:6
- b) 9:11
- c) 6:5
- d) 11:9
- 53. Three lenses L_1, L_2, L_3 are placed co-axially as shown in figure. Focal length's of lenses are given 30 cm, 10 cm and 5 cm respectively. If a parallel beam of light falling on lens L_1 , emerging L_3 as a convergent beam such that it converges at the focus of L_3 . Distance between L_1 and L_2 will be

- b) 30 cm
- d) 10 cm
- 54. The refractive index of water is 1.33. What will be the speed of light in water

a)	3	×	1	08	m	1s

b)
$$2.25 \times 10^8 \, m/s$$

c)
$$4 \times 10^8 \, m/s$$

d)
$$1.33 \times 10^8 \ m/s$$

- 55. When white light enters a prism, it gets split into its constituent colours. This is due to
 - a) High density of prism material
 - b) Because μ is different for different λ
 - c) Diffraction of light
 - d) Velocity changes for different frequencies
- 56. A person 6 feet in length can see his full size erect image in a mirror 2 feet in length. This mirror has to be
 - a) Plane or convex

b) Plane or concave

c) Necessarily convex

- d) Necessarily concave
- 57. When sunlight is incident on a prism, it produces a spectrum due to
 - a) Interference of light
 - b) Diffraction of light
 - c) Total internal reflection
 - d) Variation in speeds of different colours of light in the prism
- 58. The dispersive powers of crown and flint glasses are 0.02 and 0.04 respectively. In an achromatic combination of lenses the focal length of flint glass lens is 40 cm. The focal length of crown glass lens will be

a)
$$-20 cm$$

b)
$$+20 cm$$

c)
$$-10 cm$$

d)
$$+10 cm$$

- 59. An astronomical telescope has a large aperture to
 - a) Reduce spherical aberration

b) Have high resolution

c) Increase span of observation

- d) Have low dispersion
- 60. A ray falls on a prism ABC (AB = BC) and travels as shown in figure. The minimum refractive of the prism material should be

b) $\sqrt{2}$

c) 1.5

d) $\sqrt{3}$

- 61. The time required for making a print a distance of 0.25 m from a 60 W lamp is 5 s. If the distance is increased to 40 cm, the time required in second to make a similar print is
 - a) 3.1

b) 8

- c) 12.8
- d) 16
- 62. For an angle of incidence θ on an equilateral prism of refractive index $\sqrt{3}$, the ray refracted is parallel to the base inside the prism. The value of θ is
 - a) 30°

- b) 45°
- c) 60°

- d) 75°
- 63. If the angle of minimum deviation is of 60° for an equilateral prism, then the refractive index of the material of the prism is
 - a) 1.41
- b) 1.5

c) 1.6

- d) 1.73
- 64. An object is placed at a distance 20 cm from the pole of a convex mirror of focal length 20 cm. The image is produced at
- a) 13.3 cm
- b) 20 cm
- c) 25 cm
- d) 10 cm

- 65. Angular resolving power of human eye is
 - a) 3.6×10^3
- b) 3.6×10^2
- c) 3.6×10^4
- d) 3.6×10^6
- 66. Which of the following diagrams shows correctly the dispersion of white light by a prism

- 67. A boy is trying to start a fire by focusing Sunlight on a piece of paper using an equiconvex lens of focal length 10 cm. The diameter of the Sun is 1.39×10^9 m and its means distance from the earth is 1.5×10^9 m. $10^{11}m$. What is the diameter of the Sun's image on the paper
 - a) $6.5 \times 10^{-5} m$
- b) $12.4 \times 10^{-4} m$
- c) $9.2 \times 10^{-4} m$
- d) $6.5 \times 10^{-4} m$
- 68. The radius of curvature of convex surface of a thin plano-convex lens is 15 cm and refractive index of its material is 1.6. The power of the lens will be
 - a) +1 D
- b) -2D
- c) +3D
- d) + 4D

- 69. For the myopic eye, the defect cured by
 - a) Convex lens
- b) Concave lens
- c) Cylindrical lens
- d) Toric lens
- 70. When the object is self-luminous, the resolving power of a microscope is given by the expression

- 71. A prism of angle 30° is silvered at one side. A ray of light incident at an angle 45° is reflected back from the silvered surface. The refractive index is
 - a) $\sqrt{2}$

- b) $2\sqrt{2}$
- c) $\sqrt{3}$

- d) $5\sqrt{3}$
- 72. A compound microscope has two lenses. The magnifying power of one is 5 and the combined magnifying power is 100. The magnifying power of the other lens is
 - a) 10

b) 20

c) 50

- d) 25
- 73. A converging lens is used to form an image on a screen. When upper half of the lens is covered by an opaque screen
 - a) Half the image will disappear
 - b) Complete image will be formed of same intensity
 - c) Half image will be formed of same intensity
 - d) Complete image will be formed of decreased intensity
- 74. The magnification produced by the objective lens and the eye lens of a compound microscope are 25 and 6 respectively. The magnification of this microscope is
 - a) 25

b) 50

c) 150

- 75. In a compound microscope, the focal length of the objective and the eye lens are 2.5 cm and 5 cm respectively. An object is placed at 3.75 cm before the objective and image is formed at the least distance of distinct vision, then the distance between two lenses will be (i. e. length of the microscopic tube)
 - a) 11.67 cm
- b) 12.67 cm
- c) 13.00 cm
- d) 12.00 cm
- 76. The resolving power of an astronomical telescope is 0.2 seconds. If the central half portion of the objective lens is covered, the resolving power will be
 - a) 0.1 sec
- b) 0.2 sec
- c) 1.0 sec
- d) 0.6 sec
- 77. A plane mirror is placed at the bottom of a tank containing a liquid of refractive index μ . P is a small object at a height h above the mirror. An observer O- vertically above P outside the liquid sees P and its image in a mirror. The apparent distance between these two will be

- a) 2 µ h

- d) $h\left(1+\frac{1}{\mu}\right)$

78.	Angle of a prism is 30° and its incidence, a ray should be incretraces its path			effects and display and seem of the many and the part and seems and seems.
		60°	c) 45°	d) $\sin^{-1}\sqrt{1.5}$
79.	A wave has velocity u in med		76 ann conseasan 17 7	
	angle 30°, then the angle of re		i mediani çin die wave is i	moraciem mediani i dean
		45°	c) 60°	d) 90°
80.	The spectrum of iodine gas u		<i>z</i> , <i>z z</i>	,
	a) Only violet		b) Bright lines	
	c) Only red lines		d) Some black bands is co	ontinuous spectrum
81.	The reason for shining of air	bubble in water is		
	a) Diffraction of light		b) Dispersion of light	
	c) Scattering of light		d) Total internal reflection	n of light
82.	If a parallel beam of white lig	tht is incident on a conve		
	nearest to the lens is			
	a) Violet		b) Red	
	c) The mean colour		d) All the colours togethe	r
83.	A fish rising vertically up tow	vards the surface of wate	er with speed 3 ms^{-1} obse	rves a bird diving vertically
	down towards it with speed	$9 \ ms^{-1}$. The actual veloc	city of bird is	
	V V			
	a) $4.5 ms^{-1}$ b)	$5. ms^{-1}$	c) $3.0 ms^{-1}$	d) $3.4 ms^{-1}$
94	The refractive index of glass			
04.	minimum deviation for red a	and him the man him all and an area are an all and all and a	[[마이션] PH COUNTY (CONSIGNATION CONTROL OF CO	
	a) $D_1 < D_2$	na blac fight respectives	iy iii a prisiii oi tiiis giass. I	nen,
	b) $D_1 = D_2$			
	c) D_1 can be less than or grea	ater than D_2 depending \mathfrak{q}	upon the angle of prism	
	d) $D_1 > D_2$	2 1 8		
85.	The refractive indices of glass	s and quartz w.r.t. air ar	e 3/2 and 12/5 respective	ly. The refractive index of
	quartz w.r.t. glass is	a a a a a a a a a a a a a a a a a a a	792 (1947) - 1944 - 1944 (1947) (1947) (1947) (1947) (1947) (1947) (1947) (1947) (1947) (1947) (1947) (1947)	
		5/8	c) 5/18	d) 18/5
86.	A real object is placed at a dis	stance f from the pole o	f a convex mirror, in front	of the convex mirror. If
	focal length of the mirror is f	, then distance of the in	nage from the pole of the n	nirror is
	a) 2 <i>f</i> b)	f	c) 4f	d) $\frac{f}{4}$
		2		1
87.	A person can see clearly only	3 (表)		[178]
	50 cm. What kind of lens doe			
		Convex, +1.5 <i>D</i>	c) Concave, -2.0 <i>D</i>	d) Convex, +2.0 D
88.	The wavelength of sodium lig			\times 108 ms ⁻¹ . The wavelength
	of light in a glass of refractive	A. P. L. P.	200 - 100 -	0
		3681 Å	c) 9424 Å	d) 15078 Å
89.	Two plane mirrors are incline rendered parallel to itself after		-	
		60°	c) 90°	d) 120°
90.	Two thin lenses when in cont	Jeron (19 1 0년) - 1일 기계 - 1일	나도 맛있다면 어느님 깨끗이 보고 있다면 하고 있는데 보다면 하고 있다면 하는데 없다.	n they are $0.25 m$ apart, the
	power reduces to $+6D$. The f	ocal lengths of the lense	es (in m) are	

a)	0.125	and	0.

- b) 0.125 and 0.125
- c) 0.5 and 0.75
- d) 0.125 and 0.75
- 91. The slit of a collimator is illuminated by a source as shown in the adjoining figures. The distance between the slit S and the collimating lens L is equal to the focal length of the lens. The correct direction of the emergent beam will be as shown is figure

a) 1

b) 3

c) 2

- d) None of the figures
- 92. The graph shows variation of v with change in u for a mirror. Points plotted above the point P on the curve are for values of v

- a) Smaller then f
- b) Smaller then 2f
- c) Larger then 2f
- d) Larger then f
- 93. A prism of refractive index μ and angle A is placed in the minimum deviation position. If the angle of minimum deviation is A, then the value of A in terms of μ is

a)
$$\sin^{-1}\left(\frac{\mu}{2}\right)$$

b)
$$\sin^{-1} \sqrt{\frac{\mu - 1}{2}}$$
 c) $2 \cos^{-1} \left(\frac{\mu}{2}\right)$ d) $\cos^{-1} \left(\frac{\mu}{2}\right)$

c)
$$2\cos^{-1}\left(\frac{\mu}{2}\right)$$

- 94. A beaker containing a liquid appears to be half when it is actually two third full. The refractive index of liquid
 - a) 7/6
- b) 6/5
- c) 3/2

d) 4/3

95. A water drop in air refractes the light ray is

- 96. 1% of light of a source with luminous intensity 50 candela is incident on a circular surface of radius 10 cm. The average illuminance of surface is
 - a) 100 lux
- b) 200 lux
- c) 300 lux
- d) 400 lux
- 97. The spectrum obtained from an electric lamp or red hot heater is
 - a) Line spectrum

b) Band spectrum

c) Absorption spectrum

- d) Continuous spectrum
- 98. The splitting of white light into several colours on passing through a glass prism is due to
 - a) Refraction
- b) Reflection
- c) Interference
- d) Diffraction
- 99. A plano-convex lens when silvered in the plane side behaves like a concave mirror of focal length 30cm. However, when silvered on the convex side it behaves like a concave mirror of focal length 10 cm. Then the refractive index of its material will be
 - a) 3.0

b) 2.0

c) 2.5

- 100. A ray is reflected in turn by three plane mirrors mutually at right angles to each other. The angle between the incident and the reflected rays is
 - a) 90°

b) 60°

- c) 180°
- d) none of these
- 101. If a thin prism of glass is dipped into water then minimum deviation (with respect to air) of light produced by prism will be left ($_a\mu_g=\frac{3}{2}$ and $_a\mu_w=\frac{4}{3})$
 - a) 1/2

c) 2

d) 1/5

102. The distance trave	lled by light in glass (refrac	tive index $= 1.5$) in a nand	osecond will be
a) 45 <i>cm</i>	b) 40 cm	c) 30 cm	d) 20 cm
103. An object 2.4 m in	front of a lens forms a shar	p image on a film 12 $\it cm$ be	ehind the lens. A glass plate 1cm
thick, of refractive	index 1.50 is interposed be	tween lens and film with i	ts plane faces parallel to film. At
what distance (from	m lens) should object shifte	ed to be in sharp focus on f	film
a) 7.2 <i>m</i>	b) 2.4m	c) 3.2m	d) 5.6 <i>m</i>
104. A double convex le	ns of focal length 20 cm is a	made of glass of refractive	index 3/2. When placed
completely in wate	er ($_a\mu_\omega=4/3$), its focal ler	igth will be	
a) 80 <i>cm</i>	b) 15 cm	c) 17.7 cm	d) 22.5 cm
105. A monochromatic	beam of light passes from a	denser medium into a rar	er medium. As a result
 a) Its velocity incre 	eases	b) Its velocity dec	reases
c) Its frequency de		d) Its wavelength	
	orism to disperse polychror	natic light because light of	different colours
 a) Travel with sam 			
	e speed but deviate differe		
	nisotropic properties while	e travelling through the pr	ism
d) Travel with diffe			
		e of minimum deviation is	equal to the angle of prism. Then
the angle of the pri		7 200	
a) 50°	b) 60°	c) 70°	d) None of these
			al table, with the curved surface in
	7.7	0.00	is found to be 3 cm. If the lens is
			nt depth of the centre of the plane
	25/8 cm. Find the focal len		
a) 85 cm	b) 59 cm	c) 75 cm	d) 7.5 cm
	gnifying power of telescop	$e(J_o) = local length of the$	objective and f_e = focal length of
the eye lens)	ge and f_e should be small		
	all and f_e should be large		
c) f_o and f_e both s			
d) f_o and f_e both s			
		5 times magnified real ima	age of an object. What is the object
distance?	car rengar oo em produces	o times magninea rear mie	ige of an object. What is the object
a) 36 cm	b) 25 cm	c) 30 cm	d) 150 cm
(5)			nadows of equal intensities at
	150 cm from the photomet		
a) 1:4	b) 4:1	c) 1:2	d) 2:1
	THE PARTY NAMED IN COLUMN TO SERVICE OF THE PA		area A_1 and A_2 on the wall for its
	ions. The area of the source		•
10 12 1 2			$\left[\sqrt{A_1} + \sqrt{A_2}\right]^2$
a) $\frac{A_1 + A_2}{2}$	b) $\left[\frac{1}{A_1} + \frac{1}{A_2}\right]^{-1}$	c) $\sqrt{A_1A_2}$	d) $\left[\frac{\sqrt{A_1} + \sqrt{A_2}}{2}\right]^2$
112	- 1 2-	.000 % 1 : 1	L CE d
		oooo A and in water the w	avelength is 4500 Å. Then the
speed of light in wa a) $5.0 \times 10^{14} m/s$		c) $4.0 \times 10^8 m/s$	d) Zero
			length of the lens required to cure
it will become	ie iai point ioi a niyopia pa	tient is doubled, the local	length of the lens required to cure
a) Half		b) Double	
c) The same but a	convex lens	d) The same but a	concave lens
	nsitive for which of the follo		concave iens
o. our eye is most set	which of the folic	wavelengen	

- a) 4500 Å
- b) 5500 Å
- c) 6500 Å
- d) Equally sensitive for all wave lengths of visible spectrum
- 116. A mark at the bottom of a liquid appears to rise by 0.1 m. The depth of the liquid is 1 m. The refractive index of the liquid is
 - a) 1.33

c) $\frac{10}{9}$

- d) 1.5
- 117. The separation between the screen and a plane mirror is 2r. An isotopic point source of light is placed exactly mid way between the mirror and the screen. Assume that mirror reflects 100% of incident light. Then the ratio of illuminance on the screen with and without the mirror is
 - a) 10:1
- b) 2:1

- c) 10:9
- d) 9:1
- 118. An object is approaching a plane mirror at 10 cms⁻¹. A stationary observer sees the image. At what speed will the image approach the stationary observer?
- b) 5 cm s^{-1}
- c) 20 cms^{-1}
- d) 15 cms⁻¹
- 119. In Ramsden eyepiece, the two planoconvex lenses each of focal length f are separated by a distance 12 cm. The equivalent focal length (in cm) of the eyepiece is
- b) 12.0
- c) 13.5
- d) 15.5
- 120. An experiment is performed to find the refractive index of glass using a travelling microscope. In this experiment distance are measured by
 - a) A vernier scale provided on the microscope
- b) A standard laboratory scale
- c) A meter scale provided on the microscope
- d) A screw gauge provided on the microscope
- 121. The power of an achromatic convergent lens of two lenses is +2 D. The power of convex lens is +5 D. The ratio of dispersive power of convex and concave lenses will be
 - a) 5:3

b) 3:5

c) 2:5

- d) 5:2
- 122. An electron microscope is superior to an optical microscope in
 - a) Having better resolving power
- b) Being easy to handle

c) Low cost

- d) Quickness of observation
- 123. Parallel beam containing light of $\lambda = 400$ nm and 500 nm is incident on a prism as shown in figure. The refractive index μ of the prism is given by the relation

$$\mu(\lambda) = 1.20 + \frac{0.8 \times 10^{-14}}{\lambda^2}$$

Which of the following statement is correct?

- a) Light of $\lambda = 400$ nm undergoes total internal reflection
- b) Light of $\lambda = 500$ nm undergoes total internal reflection
- c) Neither of two wavelength undergoes total internal reflection
- d) Both wavelengths undergoes total internal reflection
- 124. A achromatic combination is made with a lens of focal length f and dispersive power ω with a lens having dispersive power of 2ω . The focal length of second will be

- b) f/2
- c) -f/2
- d) -2 f
- 125. The distance between a convex lens and a plane mirror is 10 cm. The parallel rays incident on the convex lens after reflection from the mirror form image at the optical centre of the lens. Focal length of lens will be

0			
a) 10 <i>cm</i>		b) 20 cm	
c) 30 cm		d) Cannot be determine	d
126. Four lenses are made fr	om the same type of glass.		
What will have the grea			
a) 10 cm convex and 15		b) 5 cm convex and 10 c	m concave
c) 15 cm convex and pl		d) 20 cm convex and 30	
127. The black lines in the so	olar spectrum during solar	eclipse can be explained by	
a) Planck's law	b) Kirchoff's law	c) Boltzmann's law	d) Solar disturbances
128. The focal lengths of con	vex lens for red and blue li	ght are 100 <i>cm</i> and 96.8 <i>cm</i>	respectively. The dispersive
power of material of lea	ıs is		
a) 0.325	b) 0.0325	c) 0.98	d) 0.968
129. A small piece of wire be			
VIII.			of curvature is 10 cm. If the
		e ratio of the lengths of the i	mages of the upright and
horizontal portions of t		5 N 167	100 C 10
a) 1 : 2	b) 3 : 1	c) 1:3	d) 2 : 1
130. The frequency of light i			
a) $2.5 \times 10^{14} \text{Hz}$	b) $5 \times 10^{14} \text{Hz}$	c) 10 ¹⁵ Hz	d) $2.5 \times 10^{12} \text{Hz}$
131. The focal length of a sin	20 2 (1995년 - 1일 1994년 1일		다 있습니다. [1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
a) 0.5 cm	b) 7.14 cm	t must be placed away from	
132. The solar spectrum dur		c) 7.20 cm	d) 16.16 cm
a) Continuous	b) Emission line	c) Dark line	d) Dark band
133. It is necessary to illumi	3.5%		
	**************************************	the horizontal should a plan	. 1 T. J. 18 C. S.
a) 70°	b) 20°	c) 50°	d) 40°
134. Two thin lenses of focal			25 PA P 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
combination is		and the second s	
a) 9 D	b) 2 D	c) 3 D	d) 7 D
135. The relative luminosity	of wavelength 600 nm is 0	.6. Find the radiant flux of 6	00 nm needed to produce
the same brightness ser	nsation as produced by 120	W of radiant flux at 555 nr	n
a) 50W	b) 72W	c) $120 \times (0.6)^2 W$	d) 200W
136. If in a plano-convex len	s, the radius of curvature o	f the convex surface is 10 <i>cr</i>	n and the focal length of the
lens is 30 cm, then the	efractive index of the mate	erial of lens will be	
a) 1.5	b) 1.66	c) 1.33	d) 3
137. If light travels a distance	e x in t_1 sec in air and $10\ x$	distance in t_2 in a medium,	the critical angle of the
medium will be	722 37	220	
a) $tan^{-1}\left(\frac{t_1}{t_2}\right)$	b) $\sin^{-1}\left(\frac{t_1}{t_2}\right)$	c) $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$	d) $\tan^{-1}\left(\frac{10t_1}{t_2}\right)$
138. A thin equiconvex lens	(A)77		
C 2004		a liquid, the refractive inde	x of the liquid is
a) $\frac{17}{8}$	b) $\frac{15}{9}$	c) $\frac{13}{9}$	d) $\frac{9}{8}$
U	O	0	0
139. A point object is placed			
concave mirror, if the o	oject is moved by 0.1 cm to	wards the mirror, the imag	e will stillt by about

a) 0.4 cm away from the mirror b) 0.4 cm towards the mirror c) 0.8 cm away from the mirror d) 0.8 cm towards the mirror 140. When seen in green light, the saffron and green portions of our National Flag will appear to be b) Black and green respectively a) Black c) Green d) Green and yellow respectively 141. In the position of minimum deviation when a ray of yellow light passes through the prism, then its angle of incidence is a) Less than the emergent angle b) Greater than the emergent angle c) Sum of angle incidence and emergent angle is 90° d) Equal to the emergent angle 142. A beam of monochromatic blue light of wavelength 4200 Å in air travels in water ($\mu = 4/3$). Its wavelength in water will be c) 3150 Å d) 4000 Å a) 2800 Å b) 5600 Å 143. The refractive index of a certain glass is 1.5 for light whose wavelength in vacuum is 6000 Å. The wavelength of this light when it passes through glass is a) 4000 Å b) 6000 Å c) 9000 Å d) 15000 Å 144. Why sun has elliptical shape on the time when rising and setting? It is due to b) Reflection d) Dispersion a) Refraction c) Scattering 145. A cube of side 2 m is placed in front of a concave mirror focal length 1m with its face P at a distance of 3 m and face Q at a distance of 5 m from the mirror. The distance between the images of face P and Q and height of images of P and Q are a) 1 m, 0.5 m, 0.25 mb) 0.5 m, 1 m, 0.25 mc) 0.5 m, 0.25 m, 1 md) 0.25 m, 1 m, 0.5 m146. Two thin equiconvex lenses each of focal length 0.2 m are placed coaxially with their optic centers 0.5 m apart. Then the focal length of the combination is a) -0.4 m b) 0.4 m d) 0.1 m c) -0.1 m 147. A small lamp is hung at a height of 8 feet above the centre of a round table of diameter 16 feet. The ratio of intensities of illumination at the centre and at points on the circumference of the table will be a) 1:1 b) 2:1c) $2\sqrt{2}:1$ d) 3:2 148. One surface of a lens is convex and the other is concave. If the radii of curvature are r_1 and r_2 respectively, the lens will be convex, if b) $r_1 = r_2$ d) $r_1 = 1/r_2$ a) $r_1 > r_2$ c) $r_1 < r_2$ 149. Amount of light entering into the camera depends upon a) Focal length of the objective lens b) Product of focal length and diameter of the objective lens c) Distance of the object from camera d) Aperture setting of the camera 150. Material Ahas critical angle i_A , and material B has critical angle $i_B(i_b > i_A)$. Then which of the following is (i) Light can be totally internally reflected when it passes from B to A (ii) Light can be totally internally reflected when it passes from A to B (iii) Critical angle for total internal reflection is $i_B - i_A$

(iv) Critical angle between A ar	$\operatorname{nd} B \text{ is } \sin^{-1}\left(\frac{\sin i_A}{a}\right)$		
	$\langle \sin i_B \rangle$ i) and (iv)	c) (ii) and (iii)	d) (ii) and (iv)
151. Monochromatic light is refracte			5 8 8 8 8 10 10
of incident and refracted waves	370 X	ass of refractive maca p. Th	e radio of the wavelength
a) 1 : μ b) 1		c) μ : 1	d) 1:1
152. Sparking of diamond is due to	· r	c) µ · 1	w) 1 1 1
a) Reflection		b) Dispersion	
c) Total internal reflection		d) High refractive index of	diamond
153. A room (cubical) is made of mi	rrors. An insect is mov	, ,	
velocity of image of insect on ty		마이 아들이 다른 옷이 되었다. 나를 하는 사람들이 되었다면 하지 않는 것이 하는 사람들이 되었다.	
celling mirror is			7
G.		10	
a) 10 cms ⁻¹ b) 2	0 cms ⁻¹	c) $\frac{10}{\sqrt{2}} cm s^{-1}$	d) $10\sqrt{2} \ cms^{-1}$
154. A ray of light strikes a material			
perpendicular to each other, th			
			n /5
a) $\frac{1}{\sqrt{3}}$ b) $\frac{1}{\sqrt{3}}$	<u>7</u>	c) √2	d) √3
155. The ratio of thickness of plates	of two transparent me	ediums A and B is $6:4$. If li	ght takes equal time in
passing through them, then ref	ractive index of B with	h respect to A will be	
a) 1.4 b) 1	.5	c) 1.75	d) 1.33
156. An object of height 1.5 cm is pla	aced on the axis of a co	onvex lens of focal length 2	5 <i>cm</i> . A real image is
formed at a distance of 75 cm f	rom the lens. The size	of the image will be	
	.0 <i>cm</i>	c) 0.75 cm	d) 0.5 cm
157. A light wave has a frequency of	$64 imes 10^{14}$ Hz and a wa	evelength of 5×10^{-7} metr	es in a medium. The
refractive index of the medium	is		
a) 1.5 b) 1	.33	c) 1.0	d) 0.66
158. A parallel beam of light is incid	ent on a solid transpa	rent sphere of a material of	refractive index n .If a
point image is produced at the	back of the sphere, the	e refractive index of the ma	terial of sphere is
a) 2.5 b) 1	.5	c) 1.25	d) 2.0
159. A concave lens of focal length 2	20 cm product an imag	ge half in size of the real obj	ect. The distance of the
real object is			
	0cm	c) 10cm	d) 60cm
160. Sun subtends an angle of 0.5° a			adius of curvature 15 m.
The diameter of the image of the			
	.55 cm	c) 6.55 cm	d) 5.55 cm
161. The focal length of convex lens	is 30 cm and the size	of image is quarter of the o	bject, then the object
distance is		80 1049% N	C-19C (19-87/1)
	0 <i>cm</i>	c) 30 cm	d) 40 cm
162. A parallel beam of monochrom			
incidence is 55° and angle of er		2	
	qual to 41°	c) More than 41°	d) None of the above
163. If the critical angle for total into	ernal reflection from a	i medium to vacuum is 30°,	the velocity of light in the
medium is	0		
	• • • • • • • • • • • • • • • • • • • •	c) $6 \times 10^8 m/s$	d) $\sqrt{3} \times 10^8 \ m/s$
164. Which of the following is a wro	77		
a) $D = 1/f$ where, f is the focal		[18] [18] [18] [18] [18] [18] [18] [18]	ens
b) Power is expressed in a diop	en son a sur a mai fall sidd a cons <u>o</u> n a consonance a difference a consonance		7
c) Power is expressed in diopte			d to measure f
d) D is positive for convergent	iens and negative for	divergent lens	

165. Convex lens made up of glass ($\mu_g = 1.5$) and radius will be (Refractive index of water = 4/3)	s of curvature Ris dipped in	nto water. Its focal length
a) 4R b) 2R	c) R	d) $\frac{R}{2}$
166. A ray of light falls on a transparent glass slab with reincidence for which the reflected and refracted rays a) tan ⁻¹ (1.62) b) sin ⁻¹ (1.62)	•	
167. A ray is incident at an angle of incidence <i>i</i> on one surfrom the opposite surface. If the refractive index of the nearly equal to	rface of a prism of small an	gle A and emerges normally
a) A/μ b) $A/2\mu$	c) μA	d) $\mu A/2$
168. A rod of glass ($\mu = 1.5$) and of square cross section is beam of light falls on the plane flat surface A as show	(d)	
radius of circular arc then for what maximum value	of $\frac{d}{R}$ light entering the glass	s slab through surface A
emerges from the glass through B	A. See	
$B \Longrightarrow$		
d A		
↑↑↑ < R>		
a) 1.5 b) 0.5	c) 1.3	d) None of these
169. The diameter of the objective lens of a telescope is 5	0.0 m and wavelength of lig	ht is 6000 Å. The limit of
resolution of this telescope will be	3.002	N 5 15
a) 0.03 sec b) 3.03 sec	c) 0.06 sec	d) 0.15 sec
170. A point source of light is kept below the surfaces of the a) Light emerges from every point of the surface		
b) No light is transmitted from the surface of the pol	3:	
c) All the light emitted by the source emerges from a		d
d) Some of the light emitted by the source emerges f	얼마나 내가 아이 맛을 마시는 친구들이 내려가 되었다면 하다 가게 된 것이다.	
171. A car is fitted with a convex mirror of focal length 20	cm. A second car 2 m bro	ad and 1.6 m height is 6 cm
away from the first car. The position of the second c		
a) 19.35 cm b) 17.45 cm	c) 21.48 cm	d) 15.49 cm
172. A ray of light passes an equilateral prism such that a	7774	al to the angle of emergence
and the latter is equal to $\frac{3}{4}$ th the angle of prism. The		0.50
a) 45° b) 39°	c) 20°	d) 30°
173. The index of refraction of diamond is 2.0, velocity of a) 6×10^{10} b) 3.0×10^{10}	light in diamond in cm/s i c) 2×10^{10}	s approximately d) 1.5 \times 10 ¹⁰
174. When diameter of the aperture of the objective of ar	**************************************	350
a) Magnifying power is increased and resolving pow	epop en 10일 [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100] [100]	-35 (36 (36 (36 (36 (36 (36 (36 (36 (36 (36
b) Magnifying power and resolving power both are i	ncreased	
c) Magnifying power remains the same but resolvin		
d) Magnifying power and resolving power both are		6.1 1 .1 .1
175. A person cannot see distinctly at the distance less th should use to read a book at a distance of 25 <i>cm</i>	an one metre. Calculate the	e power of the lens that he
a) $+3.0 D$ b) $+0.125 D$	c) $-3.0 D$	d) +4.0 D
	100 2 (1 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	and. 5 7007007€

- 176. It is desired to make a converging achromatic combination of mean focal length 50 cm by using two lenses of materials A and B. If the dispersive power of A and B are in ratio 1:2, the focal lengths of the convex and the concave lenses are respectively

 a) 25 cm and 50 cm
 b) 50 cm and 25 cm
 c) 50 cm and 100 cm
 d) 100 cm and 50 cm

 177. A parallel beam of light is incident on a converging lens parallel to its principal axis. As one moves away from the lens on the other side of the principal axis, the intensity of light

 a) First decreases and then increases
 b) Continuously increases
 c) Continuously decreases
 d) First increases and then decreases
- 178. A virtual image three times the size of the object is obtained with a concave mirror of curvature 36 *cm*. The distance of the object from the mirror is

 a) 5 *cm*b) 12 *cm*c) 10 *cm*d) 20 *cm*
- 179. The graph between object distance u and image distance v for lens is given below. The focal length of the lens is $v = \frac{1}{45^{\circ}}$

-10

- a) 5 ± 0.1 b) 5 ± 0.05 c) 0.5 ± 0.1 d) 0.5 ± 0.05
- 180. The apparent depth of water in cylindrical water tank of diameter 2R cm is reducing at the rate of x cm/minute when water is being drained out at a constant rate. The amount of water drained in c. c. per minute is $(n_1 = \text{refractive index of air}, n_2 = \text{refractive index of water})$
 - a) $x \pi R^2 n_1/n_2$ b) $x \pi R^2 n_2/n_1$ c) $2 \pi R n_1/n_2$ d) $\pi R^2 x$
- 181. An object is placed infront of a convex mirror at a distance of 50 cm. A plane mirror is introduced covering the lower half of the convex mirror. If the distance between the object and plane mirror is 30 cm, it is found that there is no parallax between the images formed by two mirrors. Radius of curvature of mirror will be
- a) 12.5 cm b) 25 cm c) $\frac{50}{3}$ cm d) 18 cm
- 182. An object is immersed in a fluid. In order that the object becomes invisible, it should a) Behave as a perfect reflector
 - b) Absorb all light falling on it
 - c) Have refractive index one
 - d) Have refractive index exactly matching with that of the surrounding fluid
- 183. To a fish under water, viewing obliquely a fisherman standing on the bank of the lake, the man looks
 - a) Taller than what he actually is
 - b) Shorter that what he actual is
 - c) The same height as he actually is
 - d) Depends on the obliquity
- 184. The instrument used by doctors for endoscopy works on the principle of
 - a) Total internal reflection

b) Reflection

c) Refraction

- d) None of the above
- 185. In an equilateral prism if incident angle is 45° then minimum deviation is
 - a) 30°
- b) 60°

c) 45°

d) 90°

186. A biconvex lens of focal	length 15 cm is in front of a	plane mirror. The distance	between the lens and the
mirror is 10 cm. A smal	l object is kept at a distance	of 30 cm from the lens. The	e final image is
a) Virtual and at a dista	nce of 16 cm from the mirro	r	
b) Real and at a distanc	e of 16 cm from the mirror		
c) Virtual and at a dista	nce of 20 cm from the mirro	r	
d) None of the above			
187. Refractive index of glas	s is $\frac{3}{2}$ and refractive index of	water is $\frac{4}{3}$. If the speed of li	ght in glass is 2.00 $ imes$
108 m/s, the speed in w	vater will be		
a) $2.67 \times 10^8 \ m/s$	b) $2.25 \times 10^8 \ m/s$	c) $1.78 \times 10^8 m/s$	d) $1.50 \times 10^8 \ m/s$
188. The far point of a myop	ia eye is at 40 cm. For remov	ving this defect, the power o	of lens required will be
a) 40 D	b) -4 D	c) $-2.5 D$	d) 0.25 D
189. A rectangular glass slab	ABCD, of refractive index n	$_{1}$, is immersed in water of i	refractive index $n_2(n_1 > n_2)$.
A ray of light in inciden	t at the surface AB of the sla	b as shown. The maximum	value of the angle of
incidence a_{max} such the	at the ray comes out only fro	om the other surface <i>CD</i> is g	given by
A	D		
a _{max} n ₁	n,		
Umax			
//// 8//////			
a) $\sin^{-1}\left[\frac{n_1}{n_2}\cos\left(\sin^{-1}\frac{n_2}{n_2}\right)\right]$	$\frac{i_2}{2}$	b) $\sin^{-1}\left[n_1\cos\left(\sin^{-1}\frac{1}{n_2}\right)\right]$	7]
$n_2 = n_2 = n_2$	ı ₁ /]	73 W 22 f	[/]
c) $\sin^{-1}\left(\frac{n_1}{n_2}\right)$		d) $\sin^{-1}\left(\frac{n_2}{n_1}\right)$	
2	· · · · · · · · · · · · · · · · · · ·		
190. If the speed of light in v	acuum is C m/sec, then the	: Bengging : 100 - 100	n of refractive index 1.5
a) Is $1.5 \times C$		b) Is Cd) Can have any velocity	
c) Is $\frac{c}{1.5}$			
191. Five <i>lumen/watt</i> is the	luminous efficiency of a lan	np and its luminous intensit	ty is 35 <i>candela</i> . The power
of the lamp is	13.456.11) 00 Hr	D oc III
a) 80 W	b) 176 W	c) 88 W	d) 36 W

192. A beam of light is converging towards a point I on a screen. A plane glass plate whose thickness in the direction of the beam = t, refractive index $= \mu$, is introduced in the path of the beam. The convergence point is shifted by

b) $t\left(1+\frac{1}{\mu}\right)$ away c) $t\left(1-\frac{1}{\mu}\right)$ nearer d) $t\left(1+\frac{1}{\mu}\right)$ nearer

193. Two beams of red and violet colours are made to pass separately through a prism (angle of the prism is 60°). In the position of minimum deviation, the angle of refraction will be

a) 30° for both the colours

b) Greater for the violet colour

c) Greater for the red colour

Equal but not 30° for both the

d) colours

194. A 60 watt bulb is hung over the center of a table $4 m \times 4 m$ at height of 3 m. The ratio of the intensities of illumination at a point on the centre of the edge and on the corner of the table is

a) $(17/13)^{3/2}$

b) 2/1

c) 17/13

195. An eye specialist prescribes spectacles having a combination of convex lens of focal length 40 cm in contact with a concave lens of focal length 25 cm. The power of this lens combination in dioptres is

b) -1.5

c) +6.67

d) -6.67

196. Focal length of objective and eyepiece of telescope are 200 cm and 4 cm respectively. What is length of telescope for normal adjustment?

a) 196 cm

b) 204 cm

c) 250 cm

d) 225 cm

197. The focal length of an objective of a telescope is 3 m	etre and diameter 15 cm. A	Assuming for a normal eye,
the diameter of the pupil is 3 mm for its complete us	se, the focal length of eye pi	ece must be
a) 6 cm b) 6.3 cm	c) 20 cm	d) 60 cm
198. A person uses spectacles of power + 2 D. He is suffe	ring from	
a) Myopia b) Presbyopia	c) Astigmatism	d) Hypermetropia
199. In a grease spot photometer, light from a lamp with	150 A50 A50	F.1 (F
distance 10 cm from the grease spot. On clearing the		
obtain a balance again. Then the percentage of light		
a) 64% b) 36%	c) 44%	d) 56%
200. If the refractive indices of a prism for red, yellow an	d violet colours be 1.61, 1.6	3 and 1.65 respectively,
then the dispersive power of the prism will be	0.020 0.00	0.001 0.001
a) $\frac{1.65 - 1.62}{1.61 - 1}$ b) $\frac{1.62 - 1.61}{1.65 - 1}$	c) $\frac{1.65-1.61}{}$	d) $\frac{1.65 - 1.63}{}$
201. A source emits light of wavelength 4700Å, 5400Å an		through red glass before
being tested by a spectrometer. Which wavelength i	전에 설명하는 [기업 명명 전쟁 전쟁 2015] (2015년 1월 1일	15 411 41 1
a) 6500 Å b) 5400 Å	c) 4700 Å	d) All the above
202. Total flux produced by a source of 1 <i>cd</i> is	50° 5 10 4 000	1) 4 (0)
a) $1/4\pi$ b) 8π	c) 4π	d) 1/8π
203. A lens forms a virtual image 4 cm away from it when	i an object is placed 10 cm	away from it. The lens is a
lens of focal length	h) Company 2.00 am	
a) Concave, 6.67 cm	b) Concave, 2.86 cm	6 67 am
c) Convex, 2.86 cm	d) May be concave or con	vex, 6.67 cm
204. The graph between u and v for a convex mirror is	c)	d)
a) \(\sqrt{v} \) \(\text{b} \) \(\sqrt{v} \)	ff	ff
, , , , , , , , , , , , , , , , , , , ,	,	, J
$\longrightarrow u$ $\longrightarrow u$	$\longrightarrow u$	<u> </u>
	A Section of the Control of the Cont	Pre-2000 1004 Pre-1000 1000
205. The angle of minimum deviation for a prism is 40° a	nd the angle of the prism is	60°. The angle of incidence
in this position will be	1 017	
a) 30° b) 60°	c) 50°	d) 100°
206. Light travels in two media <i>A</i> and <i>B</i> with speeds 1.8	\times 10° ms ⁻¹ and 2.4 \times 10° m	s ⁻¹ respectively. Then the
critical angle between them is	25	9 2 8
a) $\sin^{-1}\left(\frac{2}{3}\right)$ b) $\tan^{-1}\left(\frac{3}{4}\right)$	c) $\tan^{-1}\left(\frac{2}{3}\right)$	d) $\sin^{-1}\left(\frac{3}{4}\right)$
207. Under which of the following conditions will a conve	(3)	(1)
erect, diminished and virtual	ex mirror or local length / p	noutice all illiage that is
a) Only when $2f > u > f$	b) Only when $u = f$	
c) Only when $u < f$	d) Always	
208. In vacuum the speed of light depends upon	uj.iiways	
a) Frequency	b) Wave length	
c) Velocity of the source of light	d) None of these	
209. The sky would appear red instead of blue if	a)one or arese	
a) Atmospheric particles scatter blue light more tha	n red light	
b) Atmospheric particles scatter all colours equally		
c) Atmospheric particles scatted red light more than	the blue light	
d) The sun was much hotter		
210. Two beams of red and violet colours are made to pa	ss separately through a pri	sm of $A = 60^{\circ}$. In the
minimum deviation position, the angle of refraction	아내는 가지를 하는 것이 많은 나라를 살아보니 하는데 하셨다면 하는데 모르게 되었다.	
a) Greater for red colour	b) Equal but not 30° for be	oth the colours
c) Greater for violet colour		
c) dicater for violet colour	d) 30° for both the colour:	S

211. /	A Galilean telescope has a	an objective of focal length 1	00 cm and magnifying pov	wer 50. The distance
ŀ	between the two lenses in	n normal	m.: ((2) m.m.:	
ä	a) 98 cm	b) 100 cm	c) 150 cm	d) 200 cm
212.7	The plane faces of two ide	entical plano-convex lenses	each having focal length of	f 40 cm are pressed against
6	each other to form a usua	al convex lens. The distance	from this lens, at which an	object must be placed to
		age with magnification one		
	a) 80 <i>cm</i>	b) 40 cm	c) 20 cm	d) 162 cm
			own. One is made of mater	rial A of refractive index 1.5.
	일반일 중에 보는 그는 사람이 없는 그 아내는 가장이 가장하는 데 아내가 있다면 나는 아니가 있었다면 하는 사람이다.	material B and C with thick		
ä	a monochromatic paralle	l beam passing through the	slabs has the same numbe	r of waves inside both, the
	refractive index of B is			
	l← t →	1← t/3→1← 2t/3 →1		
	A			
	\rightarrow A \rightarrow \rightarrow	<i>B C</i> →		
	ل			
000	211	13.4.2	2.4.2	SD 464
	a) 1.1	b) 1.2	c) 1.3	d) 1.4
		pe cross-wires are fixed at the	ne point	
	a) Where the image is for	- mark 1960 - graph (1964) and a graph of the control of the contr		
	b) Where the image is for	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	c) Where the focal point			
	d) Where the focal point	5) 5		
	Spherical aberration in a			
	일류([[이번 하다리] [1] [[[인턴 하다 하다 하다 하다 [인턴 하다 하다 하나 하다.	st of the deviation is at the fi		
	in <u>de</u> la company de la compa	st of the deviation is at the s		
		total deviation is equally dis	stributed over the two surf	races
	d) Does not depend on th			
		iving wavelength 5000 Å an		
	12 보다 15 12 12 12 12 12 12 12 12 12 12 12 12 12	ective is 10 <i>cm</i> , then the res	olving limit and magnifyin	g power of the telescope is
	respectively			
	a) $6.1 \times 10^{-6} rad$ and 12		b) $5.0 \times 10^{-6} rad$ and 12	3
	c) $6.1 \times 10^{-6} rad$ and 8.3		d) $5.0 \times 10^{-6} rad$ and 8.3	
		ough a prism whose angle is		
	일 (등 대) 선생님 이번 이렇게 되었다. 이번 보다 (한 10년 12년 12년 12년 12년 12년 12년 12년 12년 12년 12	.64 and 1.66, the angle of de		
	a) 0.1 degree	b) 0.2 degree	c) 0.3 degree	d) 0.4 degree
				of the following statements
	(77)	object placed infront of the	mirror	
	S1: Intensity of the image			
	S2: The image will show o	있다면 하지만 하는 경기를 하면 하는 그 아버지 때문에 하는 사이를 하는데		
	S3: No change in the imag			
	S4: Intensity of the image			
	a) S1 only	b) S2 only	c) S2 and S3	d) S4 only
	Blue colour of sea water i			
	55	nt reflected from the water s	surface	
	b) Scattering of sunlight h	by the water molecules		
	c) Image of sky in water			
	d) Refraction of sunlight			
	Emission spectrum of CO	₂ gas		
	a) Is a line spectrum		b) Is a band spectrum	
(c) Is a continuous spectru	um	d) Does not fall in the visi	ble region

221.			direction given by vectorA	
		_	or along the direction of ve	
	a) $\frac{-94\hat{\mathbf{i}} + 237\hat{\mathbf{j}} + 68\hat{\mathbf{k}}}{49\sqrt{29}}$	b) $\frac{-94\hat{\mathbf{i}} + 68\hat{\mathbf{j}} - 273\hat{\mathbf{k}}}{49\sqrt{29}}$	c) $\frac{3\hat{\imath} + 6\hat{\jmath} - 2\hat{k}}{7}$	d) None of these
222.		ACCOUNT TO A COURT OF	eye, which of the following	remains constant
ore and an	a) The focal length of the		b) The object distance fro	
	c) The radii of curvature		d) The image distance fro	
223			ification has a length of 44	
223.	objective is			Service Annual Control of the Contro
	a) 4 <i>cm</i>	b) 40 cm	c) 44 cm	d) 440 cm
224.			lens. Their plane surfaces	
			ve indices μ_1 and μ_2 and R	is the radius of curvature o
	the curved surface of the	lenses, then focal length of	the combination is	
	R		R	2 <i>R</i>
	a) $\frac{2(u_1 + u_2)}{2(u_2 + u_3)}$	b)R	c) $\frac{R}{(\mu_1 - \mu_2)}$	d) $\frac{1}{(\mu_2 - \mu_4)}$
		VI T 1 22		
225.	The relation between n_1	and n_2 if the behavior of lig	ht ray is as shown in the fig	gure
	1			
	$\begin{pmatrix} n_1 \end{pmatrix} n_2$			
	→ \			
	Lens			
	a) $n_2 > n_1$	$h) n \gg n_{-}$	c) $n_1 > n_2$	d) $n_1 = n_2$
226	8-95 TANK STATE AND		of the eye and the far point	
220.	glasses will be	power 2.0 b. The defect	or the eye and the far point	of the person without the
		h) Farsighted 50 cm	c) Nearsighted, 250 cm	d) Astigmatism, 50 cm
227	Which of the following is		cj itearsigned, 250 cm	a) ristiginatisiii, 30 cm
221.	~	light is greater than the wa	wolength of green light	
		e light is smaller than the w	0 0	
	2이 없이 있다면 하면 없는 것이 없는 1000ml 이 100ml 이 1000 있다면 1000 있다면 1000 있다.	light is smaller than the w		
		t light is greater than the fr		
220			bserver on the bank of a lal	ca. To what height the
220.	image of the fish is raised	0.74	bserver on the bank of a far	xe. To what height the
	(Refractive index of like v		c) 3.8 cm	d) 2 am
220	a) 9 cm	b) 12 cm		d) 3 cm
229.			efore a mirror fixed on a w	an. The minimum length of
	(4.5)	he complete image of boy i		J) 0 12
220	a) 0.75 m	b) 0.06 m	c) 0.69 m	d) 0.12 m
230.	A plane mirror produces		2.14	D. D
224	a) Zero	b) -1	c) +1	d) Between 0 and +1
231.			45°. The refractive index of	
	a) 1.72	b) 1.414	c) 2.12	d) 1.5
232.		laced at a distance of 10 <i>cn</i>	n from a concave mirror of	radius of curvature 30 cm.
	The size of the image is		04 474 000	
	a) 9.2 <i>cm</i>	b) 10.5 cm	c) 5.6 <i>cm</i>	d) 7.5 <i>cm</i>
233.	A ray of light suffers mini	mum deviation when incid	ent at 60° prism of refracti	ve index $\sqrt{2}$. The angle of
	incidence is			

c) 45°

b) 60°

a) $\sin^{-1}(0.8)$

d) 30°

- $234.\,$ The plano-convex lens of focal length 20 cm and 30 cm are placed together to form a double convex lens. The final focal length will be
 - a) 12 cm
- b) 60 cm
- c) 20 cm
- d) 30 cm

235. For a convex mirror, the variation of *u versus v* is given by

b) 0 u

- 236. The length of a telescope is 36 cm. The focal lengths of its lenses can be
 - a) 30 cm, 6 cm
- b) $-30 \, cm$, $-6 \, cm$
- c) $30 \, cm, -6 \, cm$
- d) $-30 \, cm, 6 \, cm$
- 237. A convex lens of crown glass (n = 1.525) will behave as a divergent lens if immersed in
 - a) Water (n = 1.33)

b) In a medium of n = 1.525

c) Carbon disulphide n = 1.66

- d) It cannot act as a divergent lens
- 238. A concave mirror and a converging lens (glass with $\mu = 1.5$) both have a focal length of 3 cm when in air. When they are in water $\left(\mu = \frac{4}{3}\right)$, their new focal lengths are
 - a) $f_{Lens} = 12 cm$, $f_{Mirror} = 3cm$

b) $f_{Lens} = 3 cm$, $f_{Mirror} = 12 cm$

c) $f_{\text{Lens}} = 3 \text{ cm}, f_{\text{Mirror}} = 3 \text{ cm}$

- d) $f_{\text{Lens}} = 12 \text{ cm}, f_{\text{Mirror}} = 12 \text{cm}$
- 239. A point source of light B is placed at a distance L in front of the centre of a mirror width d hung vertically on a wall. A man walks in front of the mirror along a line parallel to the mirror at a distance 2L from it as shown. The greater distance over which he can see the image of the light source in the mirror is

a) d/2

b) d

c) 2d

- d) 3d
- 240. A concave mirror of focal length 100cm is used to obtain the image of the sun which subtends an angle of 30'. The diameter of the image of the sun will be
 - a) 1.74cm
- b) 0.87cm
- c) 0.435cm
- d) 100cm
- 241. Two point white does are 1 mm apart on a black paper. They are viewed by eye of pupil diameter 3 mm. Approximately, what is the maximum distance at which these dots can be resolved by the eye?

 [Take wavelength of light = 500 nm]
 - a) 5 m

b) 1 m

c) 6 m

- d) 3 m
- 242. Consider telecommunication through optical fibres. Which of the following statements is not true
 - a) Optical fibres may have homogeneous core with a suitable cladding
 - b) Optical fibres can be of graded refractive index
 - c) Optical fibres are subject to electromagnetic interference from outside
 - d) Optical fibres have extremely low transmission loss
- 243. A concave mirror of focal length ' f_1 ' is placed at a distance of 'd' from a convex lens of focal length ' f_2 '. A beam of light coming from infinity and falling on this convex lens-concave mirror combination returns to infinity. The distance 'd' must equal
 - a) $f_1 + f_2$
- b) $-f_2 + f_2$
- c) $2f_1 + f_2$
- d) $-2f_1 + f_2$
- 244. The graph between the lateral magnification (m) produced by a lens and the distance of the image (v) is given by

24	5. A prism of a certain angle	e deviation the red and blue	e rays by 8° and 12° respec	tively. Another prism of the
	same angle deviates the	red and blue rays by 10° an	d 14° respectively. The pris	sms are small angled and
	made of different materi	als. The dispersive powers	of the materials of the prisi	ms are in the ratio
	a) 5 : 6	b) 9:11	c) 6:5	d) 11:9
24	6. The radius of the convex	surface of plano-convex lea	ns is 20 <i>cm</i> and the refracti	ve index of the material of
	the lens is 1.5. The focal	length of the lens is		
	a) 30 cm	b) 50 cm	c) 20 cm	d) 40 cm
24	7. A compound microscope	has an objective and eye-p	iece as thin lenses of focal l	lengths 1 cm and 5 cm
	respectively. The distance	e between the objective an	d the eye-piece is 20 cm. Th	ne distance at which the
	object must be placed in	front of the objective if the	final image is located at 25	cm from the eye-piece, it
	numerically			
	a) 95/6 cm	b) 5 cm	c) 95/89 cm	d) 25/6 cm
24	8. An object of length 6 cm	is placed on the principal a	xis of a concave mirror of fo	ocal length f at a distance o
	4f. The length of the ima	ge will be		
	a) 2 cm	b) 12 cm	c) 4 cm	d) 1.2 cm
24	19. If $arepsilon_0$ and μ_0 are respectiv	ely, the electric permittivit	y and the magnetic permea	bility of free space, $arepsilon$ and μ
	the corresponding quant	ities in a medium, the refra	ctive index of the medium i	is
	IIE	με	II.o.E.o.	IIII o
	a) $\frac{\mu\varepsilon}{\mu_0\varepsilon_0}$	b) $\frac{\mu\varepsilon}{\mu_0\varepsilon_0}$	c) $\sqrt{\frac{\mu_0 \varepsilon_0}{\mu \varepsilon}}$	d) $\frac{\mu\mu_0}{\varepsilon \varepsilon_0}$
	V		N	V
25	60. The magnifying power of		25 ST	
			e focal lengths of the lenses	
0.02002	a) 18 cm, 2 cm	b) 11 cm, 9 cm	c) 10 cm, 10 cm	d) 15 cm, 5 cm
25	51. A lamp is hanging along			
	above the table, so that t	he illuminance at the edge (of the table is $\frac{1}{8}$ of that at its	center
	a) $\frac{r}{2}$	b) $\frac{r}{\sqrt{2}}$		d) $\frac{r}{\sqrt{3}}$
	$\frac{a}{2}$	$\sqrt{2}$	$\frac{6}{3}$	$\sqrt{3}$
25	52. The radius of curvature f	or a convex lens is 40 <i>cm</i> , f	or each surface. Its refracti	ve index is 1.5. The focal
	length will be			
	a) 40 <i>cm</i>	b) 20 cm		d) 30 <i>cm</i>
25	3. The image of a small elec			
		e convex lens. The maximur	n possible focal length of th	e lens required for this
	purpose will be			
	a) 0.5 m	b) 1.0 m	c) 1.5 m	d) 2.0 m
25	If the refractive angles of		nglass are 10° and 20° resp	ectively, then the ratio of
	their colour deviation po			
	a) 1 : 1	b) 2 : 1	c) 4:1	d) 1 : 2
25	55. Brilliance of diamond is	due to		
	a) Shape		b) Cutting	
	c) Reflection		d) Total internal reflection	
25	66. A point object is placed a		10 - 11 10 H 12 H.	: M. [1887
			een the lens and the object	, the image is formed at
	infinity. The thickness t i			
	a) 15 cm	b) 5 cm	c) 10 cm	d) 20 cm
25	57. The ratio of angle of min	imum deviation of a prism	in air and when dipped in v	vater will be ($_a\mu_g=3/2$
	and $_a\mu_\omega=4/3)$			
	a) 1/8	b) 1/2	c) 3/4	d) 1/4
25	88. The number of lenses in			
	a) Two	b) Three	c) Four	d) Six
25	When light is refracted fr	rom air into glass		

- a) Its wavelength and frequency both increase
- b) Its wavelength increases but frequency remains unchanged
- c) Its wavelength decreases but frequency remains unchanged
- d) Its wavelength and frequency both decrease
- 260. The ratio of the refractive index of red light to blue light in air is
 - a) Less than unity
 - b) Equal to unity
 - c) Greater than unity
 - d) Less as well as greater than unity depending upon the experimental arrangement
- 261. As shown in figure, the liquid, L_1 , L_2 and L_3 have refractive indices 1.55, 1.50 and 1.20 respectively. Therefore, the arrangement corresponds to

a) Biconvex lens

b) Biconcave lens

c) Concave-convex lens

d) Convexo-concave lens

- 262. A virtual image twice as long as the object is formed by a convex lens when the object is 10 cm away from it. A real image twice as long as the object will be formed when it is placed at a distance.....from the length
 - a) 40 cm
- b) 30 cm
- c) 20 cm
- d) 15 cm

263. Colour of the sky is blue due to

a) Scattering of light

b) Total internal reflection

c) Total emission

- d) None of the above
- 264. If the apertaure of a telescope is decreased the resolving power will
- b) Decrease
- c) Remain same
- d) Zero
- 265. The figures represent three cases of a ray passing through a prism of angle A. The case corresponding to minimum deviation is

b) 2

between them from one source so that the images of both the sources are formed at the same place

c) 3 d) None of these 266. Two point light sources are 24 cm apart. Where should a convex lens of focal length 9 cm be put in

- b) 9 cm
- c) 12 cm
- d) 15 cm
- 267. An object 5 cm tall is placed 1 m from a concave spherical mirror which has a radius of curvature of 20 cm. The size of the image is
 - a) 0.11 cm
- b) 0.50 cm
- c) 0.55 cm
- d) 0.60 cm
- 268. By placing the prism in minimum deviation position, images of the spectrum
 - a) Becomes inverted
- b) Becomes broader
- c) Becomes distinct
- d) Becomes intensive
- 269. The principal section of a glass prism is an isosceles triangle ABC with AB = AC. The face AC is silvered. A ray of light is incident normally on the face AB and after two reflections, it emerges from the base BC perpendicular to the base. Angle BAC of the prism is
 - a) 30°

b) 36°

c) 60°

- d) 72°
- 270. A point object is moving on the principal axis of a concave mirror focal length 24 *cm* towards the mirror. When it is at a distance of 60cm from the mirror, its velocity is 9cm/sec. What is the velocity of the image at that instant
 - a) 5cm/sec towards the mirror

b) 4cm/sec towards the mirror

- c) 4cm/sec away from the mirror
- d) 9cm/sec away from the mirror
- 271. A convergent beam of light is incident on a convex mirror so as to converge to a distance 12 *cm* from the pole of the mirror. An inverted image of the same size is formed coincident with the virtual object. What is the focal length of the mirror
 - a) 24 cm
- b) 12 cm
- c) 6 cm
- d) 3 cm
- 272. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of prism is 30°. One of its refracting faces is polished. The incident beam of lift will retrace back for angle of incidence
 - a) 0°

b) 45°

c) 60°

d) 90°

- 273. The phenomenon utilised in an optical fibre is
 - a) Refraction

b) Interference

c) Polarization

- d) Total internal reflection
- 274. A plano convex lens is made of glass of refractive index 1.5. The radius of curvature of its convex surface is *R*. Its focal length is
 - a) $\frac{R}{2}$

b) *R*

c) 2R

- d) 1.5 R
- 275. Critical angle for light going from medium (i) to (ii) is θ . The speed of light in medium (i) is v then speed in medium (ii) is
 - a) $v(1-\cos\theta)$
- b) $v/\sin\theta$
- c) $v/\cos\theta$
- d) $v(1 \sin \theta)$

276. The ray diagram could be correct

a) If $n_1 = n_2 = n_3$

b) If $n_1 = n_2$ and $n_1 < n_q$

c) If $n_1 = n_2$ and $n_1 > n_q$

- d) Under no circumstances
- 277. A concave lens with unequal radii a curvature made of glass ($\mu_g = 1.5$) has a focal length of 40 cm. If it is immersed in a liquid of refractive index $\mu_l = 2$, then
 - a) It behave like a convex lens of 80 cm focal length
 - b) It behave like a concave lens of 20 cm focal length
 - c) Its focal length becomes 60 cm
 - d) Nothing can be said
- 278. A beaker contains water up to a height h_1 and kerosene of height h_2 above water so that the total height of (water +kerosene) is $(h_1 + h_2)$. Refractive index of water is u_1 and that of kerosene is u_2 . The apparent shift in the position of the bottom of the beaker when viewed from above is

a)
$$\left(1 - \frac{1}{u_1}\right)h_2 + \left(1 - \frac{1}{u_2}\right)h_1$$

b)
$$\left(1 + \frac{1}{u_1}\right)h_1 + \left(1 + \frac{1}{u_2}\right)h_2$$

c)
$$\left(1 - \frac{1}{u_1}\right)h_2 + \left(1 - \frac{1}{u_2}\right)h_2$$

d)
$$\left(1 + \frac{1}{u_1}\right)h_2 - \left(1 + \frac{1}{u_2}\right)h_1$$

- 279. Microscope is an optical instrument which
 - a) Enlarges the object
 - b) Increases the visual angle formed by the object at the eye
 - c) Decreases the visual angle formed by the object at the eye
 - d) Brings the object nearer
- 280. Near and far points of human eye are
 - a) 25 cm and infinite
- b) 50 cm and 100 cm
- c) 25 cm and 50 cm
- d) 0 cm and 25 cm
- 281. A plano-concave lens is made up of glass of refractive index 1.5 and the radius of the curvature of its curved face is 100 cm. What is the power of the lens?

a) $+ 0.5 D$	b) −0.5 D	c) -2 D	d) +2 D
282. The mean distance of su	n from the earth is $1.5 imes 10$	8Km (nearly). The time tak	en by the light to reach
earth from the sun is			
a) 0.12 min	b) 8.33 min	c) 12.5 min	d) 6.25 min
283. A convex mirror has a fo		N - N - N - N - N - N - N - N - N - N -	
produces an image at	, , ,		
a) Infinity	b) <i>f</i>	c) f/2	d) 2 <i>f</i>
284. If in compound microsco			
그 그리고 아이지 않아 나를 하는 사람이 되었다면 하지만 생물을 하고 있다면 하지만	fying power of the compou	2 P. B.	are lens and eye lens
a) $m_1 - m_2$		c) $(m_1 + m_2)/2$	d) m × m
	THE PARTY OF THE P		
285. A ray of light falls on a tr			ected ray and the refracted
U.S. (1997)	dicular, the angle of incider		2 1 v
a) tan ⁻¹ (1.62)	b) $\tan^{-1}\left(\frac{1}{1.62}\right)$	c) $tan^{-1}(1.33)$	d) $\tan^{-1}\left(\frac{1}{1.33}\right)$
286. Line spectra are due to	(1.62)		(1.33)
a) Hot solids		b) Atoms in gasoous state	
	-1-1-	b) Atoms in gaseous state	
c) Molecules in gaseous		d) Liquid at low tempera	ture
287. The image of point P wh	en viewed from top of the s	labs will be	
<i>1</i> 0 → 1	E cm		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.5 cm		
1.5 cm1.5 cm	1.		
↑			
P •			
a) 2.0 <i>cm</i> above <i>P</i>	h) 1 5 cm above P	c) 2.0 <i>cm</i> below <i>P</i>	d) 1 cm above P
288. Two parallel pillars are 1	The state of the s		
	65	er. The minimum distance	between the pinars so that
they can be seen separat	b) 20.8 m	c) 91.5 m	d) 183 m
a) 3.2 m 289. Image of an object appro			ST
그리는 사람들은 아이들은 사람들이 가지 않는 것이 없는 것이 없는 것이 없었다는 것이 없는 것이 없다면 하나 다른 것이다.	[[[[[[[[[[[[[[[[[[[[[- 100 전에 구구 100 전에 되면 되고 있다면 있다면 되어 있다면 하지 않는데 하다 하는데
observed to move from -	$\frac{25}{3}$ m to $\frac{50}{7}$ m in 30 s. What is	the speed of the object in k	mh ⁻¹ ?
a) 3	b) 4	c) 5	d) 6
290. Wavelength of given ligh	it waves in air and in a med	ium are 6000 Å and 4000 Å	respectively. The critical
angle is			
a) $\sin^{-1}(\frac{3}{2})$	b) $\sin^{-1}\left(\frac{2}{3}\right)$	c) $\tan^{-1}\left(\frac{3}{2}\right)$	d) $\tan^{-1}\left(\frac{2}{3}\right)$
$(\frac{1}{2})$	$(\frac{1}{3})$	c) $\tan^{-1}\left(\frac{1}{2}\right)$	$\frac{1}{3}$
291. Two parallel light rays a	re incident at one surface o	f a prism of refractive index	t 1.5 as shown in figure. The
angle between the emer	gent rays is nearly		
a) 19°	b) 37°	c) 45°	d) 49°
292. Image formed on retina	of eye is proportional to		
a) Size of object	b) Area of object	c) Size of object Size of image	Size of image
		Size of image	Size of object
293. If the focal length of obje	ctive and eye lens are 1.2 c	m and 3 cm respectively ar	nd the object is put 1.25 cm
away from the objective	lens and the final image is f	formed at infinity. The mag	nifying power of the
microscope is		<u> </u>	
a) 150	b) 200	c) 250	d) 400
294. To focal length of a conc):50		
image 1 cm long is forme		, ,	•
a) 48 cm	b) 3 cm	c) 60 cm	d) 15 cm
295. A person sees his virtual	S - 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		55 Per 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	becomes inverted. What typ		mo mi mi tot wirwy
and the same same and a same same same same same same same sa			

a) Plane mirror	b) Convex mirror	c) Concave mirror	d) None of these
296. Figure shows a glov	ving mercury tube. The illur	minances at point A, B and C	are related as
Lo			
C • A •	• B		
a) $B > C > A$	$b) \land c > p$	c) $B = C > A$	d) $P = C < A$
		es in contact has a power of \cdot	
	~	e powers of the convergent a	
a) 2:5	b) 3:5	c) 5:2	d) 5:3
			f the following options describe
		cm placed 30 cm from the le	
a) Real, inverted, he		b) Virtual, upright, he	
c) Virtual, upright, l		d) Real, inverted, heigh	
		, can just be inspected on a n	
250	1974	length 4800Å is used, the lin	223
a) 0.8 mm	b) 0.08 mm	c) 0.1 mm	d) 0.04 mm
		letters of different colours.	
minimum raised are		letters of different colours.	the letters willen appear
a) Red	b) Green	c) Yellow	d) Violet
		:34TANGTIN	their focal length is 2/3. Their
	gth is 30 cm. What are their	- 1일을	then local length is 2/3. Then
a) -75, 50	b) -10, 15	c) 75, 50	d) -15, 10
	$r (\mu = 1.33)$ should see the		u) -13, 10
a) 60°	b) 90°	c) 0°	d) 49°
		at plane surface. New f will	
a) 20 cm	b) 40 cm	c) 30 cm	d) 10 cm
1 HOLD 11 CONTROL TO 100 MAN 19 19 19 19 19 19 19 19 19 19 19 19 19			ns in the displacement method,
then the size of the	-	., ioi die the pesitions si ioi	.o are arepracement meases,
a) I_1/I_2		c) $\sqrt{I_1 \times I_2}$	d) $\sqrt{I_1/I_2}$
74.0 Ext. (19.00)			ngth of 50 cm are placed against
77	1.5)		nation at which an object must
		h has the same size as the ob	
a) 50 cm	b) 25 cm	c) 100 cm	d) 40 cm
444 () - (powder on the paper and then
looking it into	lece of paper may be detect	ted by sprinking nuorescent	powder on the paper and then
a) Mercury light	b) Sunlight	c) Infrared light	d) Ultraviolet light
			5 D and 20 D respectively. What
will be its magnifyir	1070 Aug. 20	ye piece lenses of powers o.s	b and 20 b respectively. What
a) 30	b) 10	c) 40	d) 20
		10 TO THE RESERVE TO	and 2.5 cm respectively. The
		-	nfinity, the distance between
the object and the o		ine imai image is formed at i	minity, the distance between
a) 1.8 cm	b) 1.70 cm	c) 1.65 cm	d) 1.75 cm
		power of a telescope depen	ANTIN-DIMEN ORDER
	of the objective only	power or a telescope depen	us
	aperture of the objective on	alv	
	of the objective and that of	(E)	
(T)(4	aperture of the objective an	78 TV	
a) The didilecter of a	approved or the objective an	and of the eye piece	

310.	. The minimum distance b	etween an object and its re	al image formed by a conve	ex lens is
	a) 1.5 f	b) 2 <i>f</i>	c) 2.5 f	d) 4 f
311.	. A symmetric double conv	ex lens is cut in two equal	parts by a plane perpendic	ular to the principle axis. If
	the power of the original	lens is 4D, the power of a c	cut lens will be	
	a) 2D	b) 3D	c) 4D	d) 5D
312.	. A light ray travelling in gl	ass medium is incident on	glass-air interface at an an	gle of incidenceθ. The
	reflected (R) and transm	itted (T) intensities, both a	is function of θ , are plotted	. The correct sketch is
	•	100%	f	100%
	100% T	T	100%	T T
				8
	a) ising the little and the little a	p) sign	c) tismusi	d) functional distribution dist
			-1.	
	0 t 90°	,	0 # 90°	0 0 000
212	An object is pleased at 15	o t 90°	and langth 10 am. Whous o	aculd another convey
313.			ocal length 10 cm. Where s	nould another convex
		Č	ill coincide with the object.	1) 22
24.4	a) 19.3 cm	b) 18 cm	c) 33 cm	d) 22 cm
314.	~		ou has a focal length of +20	cm in air. Its focal length in
	water, whose refractive i			
	a) Three times longer tha	in in air	b) Two times longer than	in air
	c) Same as in air	and the second s	d) None of the above	
315.		ay is $6 \times 10^{14} Hz$. Its frequence	ency when it propagates in	a medium of refractive
	index 1.5, will be	Washington or market	55 N-8F 577082 4 7375700	Note the second whose
		b) $9.10 \times 10^{14} Hz$	The state of the s	d) $4 \times 10^{14} Hz$
316.			the top surface, what is the	e minimum refractive index
	needed for total internal	reflection at vertical face		
	45°			
	Air			
	<i>f</i>			
	μ			
	$\sqrt{2} + 1$	3	1	7000 - 0
	a) $\frac{\sqrt{2}+1}{2}$	b) $\frac{3}{2}$	c) $\sqrt{\frac{1}{2}}$	d) $\sqrt{2} + 1$
045		Y	N.	
317.		erging lens in air and a dive	erging lens in water. The re	tractive index of the
	material is		VI _ V _ Z	
	a) Equal to unity		b) Equal to 1.33	
	c) Between unity and 1.3		d) Greater than 1.33	AUGUSTA A CONSOCIATOR ACCONSCIONO SERVICIO DE CONSCIONA CON
318.		2004	a prism placed in a positior	
	a) $i_1 = i_2$	b) $r_1 = r_2$	c) $i_1 = r_1$	d) All of these
319.	. Lux is equal to	100000000000000000000000000000000000000		1007 Ot 28 98 Get 1229
	a) 1 lumen/m²	b) 1 lumen/cm ²	c) 1 candela/m²	d) 1 candela/cm²
320.	. Which of the following is			
	a) $_a\mu_r=_a\mu_\omega\times_r\mu_\omega$	b) $_a\mu_r \times _r\mu_\omega = _\omega\mu_a$	c) $_a\mu_r \times _r\mu_a = 0$	d) $_a\mu_r/_{\omega}\mu_r = _a\mu_{\omega}$
321.	. A point objects is placed	at the centre of a glass sphe	ere of radius 6 cm and refra	ctive index 1.5. The
	distance of the virtual im	age from the surface of the	sphere is	
	a) 2 cm	b) 4 cm	c) 6 cm	d) 12 cm
322	The angel of prism is 5° a	nd its refractive indices for	red and violet colours are	15 and 16 respectively

The angular dispersion produced by the prism is

b) 5°

c) 0.5°

d) 0.17°

a) 7.75°

323.		ravel a distance x in vaccure for corresponding mediu	n and the same light takes t m will be	x_2 second to travel 10 x cm
	a) $\sin^{-1}\left(\frac{10t_2}{t_1}\right)$	b) $\sin^{-1}\left(\frac{t_2}{10t_1}\right)$	c) $\sin^{-1}\left(\frac{10t_1}{t_2}\right)$	d) $\sin^{-1}\left(\frac{t_1}{10t_2}\right)$
324.		ex mirror is 20 cm its radio	us of curvature will be	
	a) 10 cm	b) 20 cm	c) 30 cm	d) 40 cm
325.	Which of the following is	not correct regarding the r	atio telescope	
	a) It can not work at nigh		\$	
	b) It can detect a very fair	nt radio signal		
	c) It can be operated ever	n in cloudy weather		
	d) It is much cheaper than	n optical telescope		
326.	When a glass slab is place	d on a cross made on a she	et, the cross appears raised	l by 1 cm. The thickness of
	the glass is 3 cm. The criti	cal angle for glass is		
	a) $\sin^{-1}(0.33)$	b) $\sin^{-1}(0.5)$	c) $\sin^{-1}(0.67)$	d) $\sin^{-1}(\sqrt{3}/2)$
327.	An object is placed at 15 d	m infront of a concave mir	ror whose focal length is 10	0 cm. The image formed
	will be			
	a) Magnified and inverted	l	b) Magnified and erect	
	c) Reduced in size and inv		d) Reduced in size and er	
328.			ansparent material. It can b	
			d n_2 respectively ($n_2 > n_1$	> 1). The lens will diverge
	a parallel beam of light if	it is filled with		
	a) Air and placed in air		b) Air and immersed in L_1	
	c) L_1 and immersed in L_2	957-1752° 955-1557-156 68	d) L_2 and immersed in L_1	
329.		en en vilaggi e en inne e lega i sino i en e e en el el en en en a invidencia en en el en el en en en en el en Este	e formed by a concave lens?	
	a) It may be erect or inve			
	b) It may be magnified an			
	c) It may be real or virtua		1 10	
220		ween the pole and focus or	- 1.3V7X - 1.	0 1100 5
330.		20m : [10mm]	objects which lie between 1	10 cm and 100 cm from
	valde flavors. The stifted ⇒user a consistencier is all some properties and	ectacle lens required to see		d) 140 D
221	a) $+0.5 D$	b) $-1.0 D$	c) $-10 D$	d) $+4.0 D$
331.	length in liquid will be		ctive index n' . If focal length	B)
	a) $\frac{fn'(n-1)}{n'-n}$	b) $\frac{f(n'-n)}{n'(n-1)}$	c) $\frac{n(n-1)}{f(n-1)}$	d) $\frac{fn'n}{n-n'}$
222	n n	()	f(n'-n) in surfaces of same radius of	n - n
334.		f refractive index 1.5, has both		cui vature A. On
	a) Convergent lens of foca		b) Convergent lens of foca	al length 3 0 R
	c) Divergent lens of focal		d) Divergent lens of focal	
333		r of a camera lens depends		length 5.0 K
333.	a) Its diameter only	or a camera iens depends	b) Ratio of diameter and f	ocal length
	c) Product of focal length	and diameter	d) Wavelength of light use	
334.	350 D		, each with focal length f ar	
	Ø.		ns. The distance from the o	73
		btain the image same as th		
	•		60 Mari	D 2.6
	a) $\frac{f}{4}$	b) $\frac{f}{2}$	c) <i>f</i>	d) 2 <i>f</i>
335.	Check the correct stateme	ents on scattering of light		
	S1: Rayleigh scattering is	$responsible \ for \ the \ bluish$	appearance of sky	

S2 : Rayleigh scattering is proportional to $1/\lambda^4$ when the size of the scatter is much less than λ

S3: Clouds having droplets of water (large scattering objects) scatter all wavelengths are almost equal and so are generally white

S4: The sun looks reddish at sunset and sunrise due to Rayleigh scattering

- a) S1 only
- b) S1 and S2
- c) S2 and S3
- d) S1, S2, S3 and S4

336. A ray of light travelling inside a rectangular glass block of refractive index $\sqrt{2}$ is incident on the glass-air surface at an angle of incidence of 45°. The refractive index of air is 1. Under these conditions the ray

- a) Will emerge into the air without any deviation
- b) Will be reflected back into the glass
- c) Will be absorbed
- d) Will emerge into the air with angle of refraction equal to 90°
- 337. The spectrum obtained from a sodium vapour lamp is an example of
 - a) Absorption spectrum b) Emission spectrum
- c) Continuous spectrum d) Band spectrum

338. A short linear object of a length b lies along the axis of a concave mirror of focal length f at a distance ufrom the pole of the mirror. The size of the image is equal to

a)
$$b\left(\frac{u-f}{f}\right)^{1/2}$$

b)
$$b \left(\frac{f}{u-f}\right)^{1/2}$$

c)
$$b\left(\frac{u-f}{f}\right)$$

d)
$$b\left(\frac{f}{f-u}\right)$$

339. Rising and setting sun appears to be reddish because

- a) Diffraction sends red rays to earth at these times
- b) Scattering due to dust particles and air molecules are responsible
- c) Refraction is responsible
- d) Polarization is responsible

340. An astronomical telescope has a magnifying power 10, the focal length of the eye-piece is 20 cm. The focal length of the objective is

a)
$$\frac{1}{200}$$
 cm

b)
$$\frac{1}{2}$$
 cm

341. The two surfaces of a biconvex lens has same radii of curvatures. This lens is made of glass of refractive index 1.5 and has a focal length 10 cm in air. The lens is cut into two equal halves along a plane perpendicular to its principle axis to yield two plano-convex lenses. The two pieces are glued such that the convex surfaces touch each other. If this combination lens is immersed in water (refractive index = 4/3), its focal length (in cm) is

342. A fish is a little away below the surface of a lake. If the critical angle is 49°, then the fish could see things above water surface within an angular range of θ ° where

a)
$$\theta = 49^{\circ}$$

b)
$$\theta = 98^{\circ}$$

c)
$$\theta = 24 \frac{1}{4}$$
°

d)
$$\theta = 90^{\circ}$$

343. A thin equiconvex lens of refractive index 3/2 and radius of curvature 30 m is put in water (refractive index $=\frac{4}{3}$). Its focal length is

- b) 0.30 m
- c) 0.45 m
- d) 1.20 m

344. A concave mirror of focal length 15 cm forms an image having twice the linear dimensions of the object. The position of the object when the image is virtual will be

- a) 22.5 cm
- b) 7.5 cm
- c) 30 cm
- d) 45 cm

345. A planoconvex lens has a maximum thickness of 6 cm. When placed on a horizontal table with the curved surface in contact with the table surface, the apparent depth of the bottommost point of the lens is found to be 4 cm. If the lens is inverted such that the plane face of the lens is in contact with the surface of the

table, the apparent depth of the centre of the plane face is found to be $\left(\frac{17}{4}\right)$ cm. The radius of curvatur	e of
the lens is	
a) 34 cm b) 128 cm c) 75 cm d) 68 cm	
346. A ray of light strikes a plane mirror M at an angle of 45° as shown in the figure. After reflection, the ray of light strikes a plane mirror M at an angle of 45° as shown in the figure.	y
passes through a prism of refractive index 1.5 whose apex angle is 4°. The total angle through which	he
ray is deviated is	
45°	
a) 90° b) 91° c) 92° d) 93°	
347. The slab of a material of refractive index 2 shown in figure has curved surface APB of radius of curva	ure
10 cm and a plane surface CD. On the left of APB is air and on the right of CD is water with refractive	
indices as given in figure. An object O is placed at a distance of 15 cm from pole P as shown. The distance of 15 cm from pole P as shown.	nce
of the final image of O from P , as viewed from the left is	
A C	
P C 0 - 4	
$\mu_{s}=2.0$	
B 15 cm → D	
← 20 cm →	
a) 20 cm b) 30 cm c) 40 cm d) 50 cm	
348. The diameter of the objective of a telescope is a, its magnifying power is \emph{m} and wavelength of light is	તે.

34 The resolving power of the telescope is

a) $(1.22\lambda)/a$

b) $(1.22a)/\lambda$

c) $\lambda m/(1.22a)$

d) $a/(1.22\lambda)$

349. A convex lens is made of 3 layers of glass of 3 different materials as in the figure. A point object is placed on its axis. The number of images of the object are

b) 2

c) 3

d) 4

350. Transmission of light to large distances through optical fibres is based on

a) Dispersion

b) Refraction

c) Total internal reflection

d) Interference

351. A ray of light is incident at an angle of 60° on one face of a prism of angle 30°. The ray emerging out of the prism makes an angle of 30° with the incident ray. The emergent ray is

- a) Normal to the face through which it emerges
- b) Inclined at 30° to the face through which it emerges
- c) Inclined at 60° to the face through which it emerges
- d) None of these

352. The head lights of a jeep are 1.2 m apart. If the pupil of the eye of an observer has a diameter of 2mm and light of wavelength 5896 Å is used, what should be the maximum distance of the jeep from the observer if the two head lights are just separated?

a) 33.9 km

b) 33.9 m

c) 3.34 km

d) 3.39 m

353. An unc	er water swimm	er is at a depth of 12 i	m below the surface of water. A	A bird is at a height of $18 m$
				l appears to be a distance from
the sur	face of water eq	ual to (Refractive Inde	ex of water is $\frac{4}{3}$)	
a) 24 r	ı	b) 12 m	c) 18 m	d) 9 m
354. When	ight rays from th	ne sun fall on a convex	lens along a direction parallel	to its axis
a) Foca	ıl length for all co	olours is the same		
b) Foca	ıl length for viole	et colour is the shortes	st	
c) Foca	l length for yello	w colour is the longes	st	
d) Foca	l length red colo	our is the shortest		
355. To an o	bserver on the e	earth the starts appear	to twinkle. This can be ascribe	ed to
a) The	fact that stars do	not emit light contin	uously	
b) Free	uent absorption	of star light by their o	own atmosphere	
		of star light by the ea	하는 것 같아. 전에 가장 아이트 보다 하는 것이 있다면 보다.	
		fluctuations in the ear	and the second of the second o	
			is parallel to the base of the pr	ism only when the
	t is of a particula		b) Ray is incident nor	
7.50	undergoes minir		d) Prism is made of a	
			produced a real image?	
	e mirror	b) Concave lens	c) Convex mirror	d) Concave mirror
				fractive index 1.5. The speed of
	the medium is	velengin travelling in	vacaum enters a meatam of re	macave mack 1.5. The speed of
		b) $2 \times 10^8 \text{ms}^{-1}$	c) $1.5 \times 10^8 \text{ms}^{-1}$	d) $6 \times 10^8 \mathrm{ms}^{-1}$
		icroscope depends up		u) o × 10 ms
	elength of light i		b) Wavelength of light	used inversely
	uency of light us		d) Focal length of obje	_
1000	THE 1100 STOR		s for violet and red light respec	
			red light respectively, then	tively and To and Tr are the
			$(F_r ext{ c}) f_c > f_r \text{ and } F_v > F_r$	d) $f > f$ and $F < F$
		information about	$r_r = c_f f_c > f_r \text{ and } r_v > r_r$	$U_j J_v > J_r$ and $I_v < I_r$
	atoms of the pris		b) The atoms of the so	uirco
	1.5			
250	molecules of the	e mirror can be decrea	N. C.	is molecules of the source
	T-1	b) Oil	c) Both	d) None of these
a) Wat		Legist (1988)		40 - 10 10 10 10 10 10 10 10 10 10 10 10 10
			and the other of focal length -2	to cm are put in contact. The
a) + 1	ied focal length i		c) $+ 30 cm$	d) $-30 cm$
		b) -15 <i>cm</i>	(A)	
100		is an image of magnin	cation 3. The object distance, is	local length of mirror is 24
cm, ma		L) 22 16	. 22	D 16
	m, 24 cm	b) 32 cm, 16 cm	c) 32 cm only	d) 16 cm only
			. When looked obliquely in the	mirror, a number of images
		ces of the plane mirro		(C. N. Alexander)
27.55	image is brighte		b) second image is bri	
	d image is bright		d) all images beyond s	示 3
		맛있는 아이트 사람이 없는 아이트 아이트 아이트 아이트 아이를 다 먹었다.	이 전 없이 되어 그렇게 느 이렇게 하는 바이트 아이들이 얼룩했다는 바이트 없는 이렇게 되었다.	concave mirror of focal length
			ed by the image of the wire is	122 E 14
a) 4 cn		b) 6 cm ²	c) 2 cm ²	d) 9 cm ²
			from a concave mirror, the im	
	53		9 ms^{-1} , the speed with which	₹/A
a) 0.1	ns ⁻¹	b) 1 ms ⁻¹	c) 3 ms^{-1}	d) 9 ms^{-1}

	orms an image one-fourth t	he size of the object. If obj	ect is at a distance of 0.5 m from t	ne
	b) -1.5 m	c) 0.4 m	d) -0.4 m	
a) 0.17 m	D) -1.5 m	c) 0.4 m	a) -0.4 m	

- 369. The wavelength of light in two liquids 'x' and 'y' is 3500 Å and 7000 Å, then the critical angle of x relative to y will be
 - a) 60° b) 45° c) 30° d) 15°
- 370. The graph shows how the magnification m produced by a convex thin lens varies with image distance v. What was the focal length of the used lines

a) b/cb) b/ca c) bc/a d) c/b

- 371. The aperture of the objective lens of a telescope is made large so as to
 - a) Increase the resolving power of the telescope
 - b) Increase the magnifying power of the telescope
 - c) To focus on distant objects
 - d) Make image aberrationless
- 372. In a movie hall, the distance between the projector and the screen is increased by 1% illuminates on the screen is
 - a) Increased by 1%
- c) Increased by 2% b) Decreased by 1%
 - d) Decreased by 2%

- 373. Pick the correct statement from the following
 - a) Primary rainbow is a virtual image and secondary rainbow is a real image
 - b) Primary rainbow is a real image and secondary rainbow is a virtual image
 - c) Both primary and secondary rainbows are virtual images
 - d) Both primary and secondary rainbows are real images
- 374. An electric lamp is fixed at the ceiling of a circular tunnel as shown is figure. What is the ratio the intensities of light at base A and a point B on the wall

b) $2:\sqrt{3}$ a) 1:2

c) $\sqrt{3}:1$

d) 1: $\sqrt{2}$

- 375. Refractive index of air is 1.0003. The correct thickness of air column which will have one more wavelength of yellow light (6000 Å) than in the same thickness in vacuum is
 - a) 2 mm
- b) 2 cm
- c) 2 m

- d) 2 km
- 376. A camera objective has an aperture diameter d. If the aperture is reduced to diameter d/2, the exposure time under identical conditions of light should be made
 - a) $\sqrt{2}$ fold
- b) 2 fold
- c) $2\sqrt{2}$ fold
- d) 4 fold
- 377. A glass lens is placed in a medium in which it is found to behave like a glass plate. Refractive index of the medium will be
 - a) Greater than the refractive index of glass
 - b) Smaller than the refractive index of glass
 - c) Equal to refractive index of glass
 - d) No case will be possible from above
- 378. A double convex lens ($R_1 = R_2 = 100$ cm) having focal length equal to the focal length of a concave mirror. The radius of the concave mirror is

a) 10 cm	b) 20 cm	c) 40 cm	d) 15 cm
379. A candle placed 25	5 cm from a lens, forms an i	image on a screen placed 75	cm on the other end of the lens.
The focal length ar	nd type of the lens should b	e	
a) +18.75 cm and	convex lens	b) $-18.75 cm$ and c	oncave lens
c) +20.25 cm and		d) $-20.25 cm$ and c	
10.00			30 ms ⁻¹ , then critical angle for
total internal refle			,
a) 13.3°	b) 89.7°	c) 86.7°	d) 10.3°
			espectively. If they are to be used
	scope, the magnification of	o atopti es ana Tatopti es T	espectively. It they are to be used
a) B will be greate		b) A will be greater	than R
c) The information		d) None of the abov	
			e third lens will be at a distance
	$f_2 = -10 \text{ cm}, f_3 = +30 \text{ cm}$		e till d lells will be at a distance
$\int_{\mathbf{A}} \mathbf{b} = +10 \mathrm{cm},$	210 cm, j ₃ - +30 cm	ij	
\ \ \ \ \			
[/\ \/	\wedge		
v	V		
30 cm → 3 cm	10 cm ►		
a) 15 cm	b) Infinity	c) 45 cm	d) 30 cm
Control of the Contro			s combined with another thin
8 8			without deviation. The angle of
the prism P_2 is	470		7.0 0
a) 5.33°	b) 4°	c) 3°	d) 2.6°
	a planoconvex lens is silver	ed. If μ be the refractive inde	ex and R, the radius of curvature
the control of the co	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	e like a concave mirror of ra	
-) D	b) $\frac{R}{(\mu-1)}$	R^2	d) $\left[\frac{(\mu+1)}{(\mu-1)}\right]R$
a) μ <i>R</i>	$(\mu-1)$	c) $\frac{R^2}{\mu}$	$\left[\frac{(\mu-1)}{(\mu-1)}\right]^{K}$
385. The refractive inde	ex of water and glycerine a	re 1.33 and 1.47 respectively	y. What is the critical angle for a
light ray going from	m the latter to the former?		
a) 60°48′	b) 64°48′	c) 74°48′	d) None of these
15	-		terials indicated by different
shades. A point ob	ject is placed on its axis. Th	ne object will form	
Δ			
V		Late And a section of the section of	
a) 1 image	b) 2 images	c) 3 images	d) 9 images
1911		hich colour the angle for dev	
a) Red	b) Yellow	c) Blue	d) Violet
388. A neon sign does r	iot produce	13.4	
a) Line spectrum		b) An emission spec	ctrum
c) An absorption s	- F	d) Photos	
389. Image formed by a) F.1 1	D.L
a) Virtual	b) Real	c) Enlarged	d) Inverted
		iz travelling in vaccum enter	s a medium of refractive index
1.5. It wavelength		a) <000 Å	4) 5500 %
a) 4000Å	b) 5000Å	c) 6000Å	d) 5500Å

391				
	If two +5 D, lenses are method distance is	ounted at some distance ap	eart, the equivalent power v	vill always be negative, if
	a) Greater than 40 cm	b) Equal to 10 cm	c) Equal to 10 cm	d) Less than 10 cm
392	AND STATE OF THE S	ges from a block of glass, th		u) Bess than To em
372	a) Equal to the angle of re		e critical angle is	
			1	
	5)	refracted ray and the norm		
	1777 1777 1777 1777 1777 1777 1777 1777 1777 1777	S	travels along the glass-air	boundary
00202000	d) The angle of incidence		212 012 8282 89 8277	20 D 147700 SS0 254755
393		a telescope is <i>m</i> . If the foca	I length of the eye-piece is	halved, then its magnifying
	power is		No.	
	a) 2m	b) $\frac{m}{2}$	c) $\frac{1}{2m}$	d) 4m
	1178	4	2116	6700
394			ng divergence angle $lpha$, falls	
	slab as shown. The angles	s of incidence of the two ex	treme rays are equal. If the	thickness of the glass slab
	is t and the refractive ind	ex n , then the divergence a	ngle of the emergent beam	is
	S			
	α			
	<i>y</i> 1			
	1/ \1			
	n ' t			
	a) Zero	b) α	c) $\sin^{-1}(1/n)$	d) $2 \sin^{-1}(1/n)$
395	When white light passes	through a glass prism, one	gets spectrum on the other	side of the prism. In the
	emergent beam, the ray v		•	•
	or			
	Deviation by a prism is lo	west for		
	a) Violet ray	b) Green ray	c) Red ray	d) Yellow ray
206	(5)	b) dieen ray	c) Red ray	uj renow ray
390		brought to focus by a plan-	a-convey lens A then conca	we lone of the same focal
	47		o-convex lens. A then conca	ve lens of the same focal
	length is joined to the firs	st lens. The effect of this is	o-convex lens. A then conca	ve lens of the same focal
	length is joined to the first a) The focus shifts to infin	et lens. The effect of this is		ve lens of the same focal
	length is joined to the firs a) The focus shifts to infin b) The focal point shifts to	et lens. The effect of this is nity owards the lens by a small	distance	ve lens of the same focal
	length is joined to the first a) The focus shifts to infinib) The focal point shifts to c) The focal point shifts a	et lens. The effect of this is nity owards the lens by a small away from the lens by a sma	distance	ve lens of the same focal
	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts a d) The focus remains und	et lens. The effect of this is nity owards the lens by a small away from the lens by a sma listurbed	distance all distance	
397	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts a d) The focus remains und	et lens. The effect of this is nity owards the lens by a small away from the lens by a sma listurbed	distance	
397	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts a d) The focus remains und	et lens. The effect of this is nity owards the lens by a small away from the lens by a sma listurbed	distance all distance	
397	length is joined to the first a) The focus shifts to infin b) The focal point shifts to c) The focal point shifts a d) The focus remains und In a compound microscopy	et lens. The effect of this is nity owards the lens by a small tway from the lens by a sma listurbed pe, if the objective produces	distance all distance	ece produces an image l_e ,
397	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts a d) The focus remains und In a compound microscopthen	et lens. The effect of this is nity owards the lens by a small tway from the lens by a sma listurbed pe, if the objective produces	distance all distance s an image I_o and the eye pi	ece produces an image I_e ,
	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real	et lens. The effect of this is nity owards the lens by a small away from the lens by a sma listurbed pe, if the objective produces	distance all distance s an image I_o and the eye pith) I_o is real but I_e is virtua	ece produces an image I_e , al al
	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al	distance all distance s an image I_o and the eye pith) I_o is real but I_e is virtuad) I_o and I_e are both virtuans.	ece produces an image I_e , al al al at 15 $\it cm$. What type and of
	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens in	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al in myopic defect. He is able the should use to see clearly	distance all distance s an image I_o and the eye pit b) I_o is real but I_e is virtuad) I_o and I_e are both virtuates see clear objects placed at the object placed 60 cm av	ece produces an image I_e , al al at 15 cm . What type and of way
	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens a) Concave lens of 20 cm	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al in myopic defect. He is able the should use to see clearly focal length	distance all distance s an image I_o and the eye pit b) I_o is real but I_e is virtuad) I_o and I_e are both virtuate see clear objects placed at the object placed 60 cm ave b) Convex lens of 20 cm for	ece produces an image I_e , al al al at 15 cm . What type and of way ocal length
398.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens 1 a) Concave lens of 20 cm c) Concave lens of 12 cm	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al in myopic defect. He is able the should use to see clearly focal length focal length	distance all distance s an image I_o and the eye pires b) I_o is real but I_e is virtual d) I_o and I_e are both virtuato see clear objects placed at the object placed 60 cm avelon b) Convex lens of 20 cm for d) Convex lens of 12 cm for the object places of 12 cm for	ece produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length
398.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is place	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al in myopic defect. He is able the should use to see clearly focal length focal length	distance all distance s an image I_o and the eye pit b) I_o is real but I_e is virtuad) I_o and I_e are both virtuate see clear objects placed at the object placed 60 cm ave b) Convex lens of 20 cm for	ece produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length
398.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens 1 a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed to the sufficient of the image	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al in myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a cond	distance all distance s an image I_o and the eye pires b) I_o is real but I_e is virtual d) I_o and I_e are both virtuated see clear objects placed at the object placed 60 cm avelong b) Convex lens of 20 cm for d) Convex lens of 12 cm for avernirror of focal length 1	ece produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length 0 cm. What is the size and
398.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens 1 a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed and the sufficient of the image a) 4 cm, real	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept) 4 cm, virtual	distance all distance s an image I_o and the eye pinch I_o is real but I_e is virtuated) I_o and I_e are both virtuated see clear objects placed at the object placed 60 cm avelone b) Convex lens of 20 cm for d) Convex lens of 12 cm for eave mirror of focal length 1 c) 1.0 cm, real	ece produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length
398.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lens a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed to the image a) 4 cm, real The numerical aperture for the image and the control of the cont	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al he should use to see clearly focal length focal length ced 15 cm in front of a concept b) 4 cm, virtual for a human eye is of the ore	distance all distance I_o and the eye pinch I_o is real but I_e is virtuated I_o and I_e are both virtuated see clear objects placed at the object placed I_o the object placed I_o convex lens of I_o con	ece produces an image l_e , al al al at 15 cm . What type and of way ocal length ocal length 0 cm. What is the size and d) None of these
398. 399. 400.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lenst a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed in a compound and the image a) 4 cm, real The numerical aperture for a) 1	st lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept b) 4 cm, virtual for a human eye is of the ore b) 0.1	distance all distance s an image I_o and the eye pinch I_o is real but I_e is virtuated) I_o and I_e are both virtuated see clear objects placed at the object placed $60 \ cm$ ave b) Convex lens of $20 \ cm$ for ave mirror of focal length $10 \ c$ $1.0 \ c$ m , real der of c c d	ece produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length 0 cm. What is the size and d) None of these d) 0.001
398. 399. 400.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lenst a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed in a compound and the image a) 4 cm, real The numerical aperture for a) 1	st lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept b) 4 cm, virtual for a human eye is of the ore b) 0.1	distance all distance I_o and the eye pinch I_o is real but I_e is virtuated I_o and I_e are both virtuated see clear objects placed at the object placed I_o the object placed I_o convex lens of I_o con	ece produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length 0 cm. What is the size and d) None of these d) 0.001
398. 399. 400.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lenst a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed nature of the image a) 4 cm, real The numerical aperture for a) 1	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept b) 4 cm, virtual for a human eye is of the ore b) 0.1	distance all distance I_o and the eye pinch I_o is real but I_e is virtuated) I_o and I_e are both virtuated see clear objects placed at the object placed $60 \ cm$ ave b) Convex lens of $20 \ cm$ for ave mirror of focal length $10 \ c$ and $10 \ c$ cm, real der of $10 \ c$ cm, real and the distance of object from the object from the distance of object from the object	ecce produces an image I_e , al al at 15 cm . What type and of vay ocal length ocal length 0 cm. What is the size and d) None of these d) 0.001 om objective lens is $\frac{1}{3.8}$ cm.
398. 399. 400.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopt then a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lenst a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed nature of the image a) 4 cm, real The numerical aperture for a) 1 In compound microscope The focal length of object	In the effect of this is onity owards the lens by a small away from the lens by a small away from the lens by a small sturbed pe, if the objective produces al alone myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept by 4 cm, virtual for a human eye is of the order to be only 0.1 e, magnifying power is 95 are tive lens is $\frac{1}{4}$ cm. What is the	distance all distance I_o and the eye pinch I_o is real but I_e is virtuated) I_o and I_e are both virtuated see clear objects placed at the object placed $60\ cm$ ave b) Convex lens of $20\ cm$ for ave mirror of focal length $10\ c$ and $10\ c$ cm, real derivation of $10\ c$ cm, real derivation of eye pieces magnification of eye pieces	ecce produces an image I_e , al al al at 15 cm. What type and of vay ocal length ocal length 0 cm. What is the size and d) None of these d) 0.001 om objective lens is $\frac{1}{3.8}$ cm.
398. 399. 400.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopthen a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lenst a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed nature of the image a) 4 cm, real The numerical aperture for a) 1	et lens. The effect of this is nity owards the lens by a small away from the lens by a small sturbed pe, if the objective produces al myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept b) 4 cm, virtual for a human eye is of the ore b) 0.1	distance all distance I_o and the eye pinch I_o is real but I_e is virtuated) I_o and I_e are both virtuated see clear objects placed at the object placed $60 \ cm$ ave b) Convex lens of $20 \ cm$ for ave mirror of focal length $10 \ c$ and $10 \ c$ cm, real der of $10 \ c$ cm, real and the distance of object from the object from the distance of object from the object	ecce produces an image I_e , al al al at 15 cm . What type and of vay ocal length ocal length 0 cm. What is the size and d) None of these d) 0.001 om objective lens is $\frac{1}{3.8}$ cm.
398. 399. 400.	length is joined to the first a) The focus shifts to infinite b) The focal point shifts to c) The focal point shifts at d) The focus remains und In a compound microscopt then a) I_o is virtual but I_e is recc) I_o and I_e are both real A person is suffering from what focal length of lenst a) Concave lens of 20 cm c) Concave lens of 12 cm A 2.0 cm tall object is placed nature of the image a) 4 cm, real The numerical aperture for a) 1 In compound microscope The focal length of object	In the effect of this is onity owards the lens by a small away from the lens by a small away from the lens by a small sturbed pe, if the objective produces al alone myopic defect. He is able the should use to see clearly focal length focal length ced 15 cm in front of a concept by 4 cm, virtual for a human eye is of the order to be only 0.1 e, magnifying power is 95 are tive lens is $\frac{1}{4}$ cm. What is the	distance all distance I_o and the eye pinch I_o is real but I_e is virtuated) I_o and I_e are both virtuated see clear objects placed at the object placed $60\ cm$ ave b) Convex lens of $20\ cm$ for ave mirror of focal length $10\ c$ and $10\ c$ cm, real derivation of $10\ c$ cm, real derivation of eye pieces magnification of eye pieces	ecce produces an image I_e , al al al at 15 cm. What type and of vay ocal length ocal length 0 cm. What is the size and d) None of these d) 0.001 om objective lens is $\frac{1}{3.8}$ cm.

402.	2. Electromagnetic radiation of frequency n , wavelength λ , travelling with velocity v in air, enters a glass					
	of refractive index μ . The frequency, wavelength and velocity of light in the glass slab will be respectively					
	a) $\frac{n}{\mu}$, $\frac{\lambda}{\mu}$, $\frac{v}{\mu}$	b) $n, \frac{\lambda}{\mu}, \frac{\nu}{\mu}$	c) $n, \lambda, \frac{v}{\mu}$	d) $\frac{n}{\mu}$, $\frac{\lambda}{\mu}$, v		
403.		AND THE STATE OF T	convex lens is 10 cm. If the	Self Control C		
	then the focal length will be (Refractive index $= 1.5$)					
	a) 10.5 cm	b) 10 cm	c) 5.5 <i>cm</i>			
404. A thin convex lens of focal length 10 cm is placed in contact with a concave lens of same material and of						
	5. P. C.	al length of combination w		1) 20		
405	a) Zero	b) Infinity	c) 10 cm	d) 20 cm		
405.	Consider an equiconvex lens of radius of curvature R and focal length f . If $f > R$, the refractive index μ of the material of the lens					
	a) Is greater than zero but less than 1.5					
	(TANGED TO THE CONTROL OF THE CONTR		d) None of the above			
406.	6. A convex lens of focal length f produces a virtual image n times the size of the object. Then the distance of the object from the lens is					
			c) $\left(\frac{n-1}{n}\right)f$	d) $\left(\frac{n+1}{n}\right)f$		
407.	An object moving at a spec	ed of 5 m/s towards a conc	ave mirror of focal length	f = 1 mis at a distance of 9		
	m. The average speed of the	he image is				
	a) $\frac{1}{5}$ m/s	b) $\frac{1}{10}$ m/s	c) $\frac{5}{9}$ m/s	d) $\frac{4}{10}$ m/s		
	3	10	,	10		
100.	408. A man can see the objects upto a distance of one metre from his eyes. For correcting his eye sight so the he can see an object at infinity, he requires a lens whose power is					
	Or	inity, ne requires a iens wi	ose power is			
		m of the distant object. The	power of the lens required	d to see far objects will be		
	a) +0.5 D	b) +1.0 D	c) +2.0 D	d) -1.0 D		
409.	The refracting angle of a p	orism is Aand the refractive	index of the material of th	e prism is $cot(A/2)$. The		
	angle of minimum deviation of the prism is					
	a) $\pi + 2A$	b) $\pi - 2A$	c) $\frac{\pi}{2} + A$	d) $\frac{\pi}{2}$ – A		
	410. The wavelength of red light from He-Ne laser is 633nm in air but 474 nm in the aqueous humor inside the eye ball. Then the speed of red light through the aqueous humor is					
	a) $3 \times 10^8 \text{ms}^{-1}$	b) $1.34 \times 10^8 \text{ms}^{-1}$	c) $2.25 \times 10^8 \text{ms}^{-1}$	d) $2.5 \times 10^8 \text{ms}^{-1}$		
411.	The magnifying power of	an astronomical telescope	is 10 and the focal length o	f its eye-piece is 20 cm. The		
	focal length of its object w			e extension is the control state of the		
	a) 200 cm	b) 2 cm	c) 0.5 cm	d) 0.5×10^{-2} cm		
412.			creen which is 60 cm is incr	eased to 180 cm. The		
	5	compared with the origina		n o		
412	a) (1/9) times	b) (1/3) times	c) 3 times	d) 9 times		
413.	7.500 STAN		er medium at an angle of inc	X200		
	reflection and reflection are respectively r and r' .If the reflected and refracted rays are at right angles to each other, the critical angle for the given pair of media is					
	a) $\sin^{-1}(\tan r')$	b) $\sin^{-1}(\tan r)$	c) $tan^{-1}(sin i)$	d) cot(tan i)		
414.						
	4. The objective lens of a compound microscope produces magnification of 10. In order to get an overall magnification of 100 when image is formed at 25 <i>cm</i> from the eye, the focal length of the eye lens should					
	be					
	a) 4 cm	b) 10 cm	c) $\frac{25}{9}$ cm	d) 9 cm		
		.,	9 0111	~,		

415. An object is placed images formed is	115. An object is placed asymmetrically between two plane mirrors inclined at an angle of 72°. The number of images formed is					
a) 5	b) 4	c) 2	d) Infinite			
AND ALL THE CONTROL OF THE CONTROL O		20 Sept 1	사용 이 바람이 얼마를 하는 것이 되었다. 그리는 그 얼마를 다 살아 있다.			
416. A convex mirror of radius of curvature 1.6 m has an object placed at a distance of 1 m from it. The image is formed at a distance of						
	a) 8/13 m in front of the mirror b) 8/13 m behind the mirror					
c) 4/9 m in front o		d) 4/9 m behind t				
	7. A thin glass (refractive index 1.5) lens has optical power of -5 D in air. Its optical power in a liquid mediu					
	with refractive index 1.6 will be					
a) 1 D	b) -1 D	c) 25 D	d) -25 D			
	2000 2 00 - 1000 000					
418. The refractive index of a prism for a monochromatic wave is $\sqrt{2}$ and its refracting angle is 60°. For minimum deviation, the angle of incidence will be						
a) 30°	b) 45°	c) 60°	d) 75°			
		0.00	5000 PM			
	19. A ray of light travelling in glass $\left(\mu = \frac{3}{2}\right)$ is incident on a horizontal glass air surface at the critical angle θ_c . If thin layer of water $\left(\mu = \frac{4}{3}\right)$ is now poured on the glass air surface, the angle at which the ray emerges					
	\ 3/	on the glass an surface, the	angle at which the ray emerges			
into air the water-a	into air the water-air surface is					
Water						
a) 60°	b) 45°	c) 90°	d) 180°			
7.5	aced between object and	a screen. The size of object i	is 3 cm and an image of height 9 cm			
· · · · · · · · · · · · · · · · · · ·	- 57		what will be the size of image on			
the screen?		1.45.	~			
a) 2 cm	b) 6 cm	c) 4 cm	d) 1 cm			
421. An object is viewed	d through a compound m	icroscope and appears in fo	cus when it is 5 mm away from the			
objective lens. Whe	en a sheet of transparent	material 3 mm thick is place	ed between the objective and the			
	microscope, the objective lens has to be moved 1 mm to bring the object back into the focus. The refractive					
index of the transp						
	b) 1.6	c) 1.8	d) 2.0			
422. An achromatic pris	m is made by combining	two prisms $P_1(\mu_v = 1.523, \mu_v)$	$\mu_r = 1.515$) and $P_2(\mu_v =$			
1.666, $\mu_r = 1.650$); where μ represents the refractive index. If the angle of the prism P_1 is 10°, then the						
angle of the prism	P ₂ will be					
a) 5°	b) 7.8°	c) 10.6°	d) 20°			
423. Two thin lenses of	focal length 20 cm and 2	5 cm are in contact. The effe	ctive power of the combination is			
a) 4.5 D	b) 18 D	c) 45 D	d) 9 D			
424. A lens is made of fl	int glass (refractive inde	x = 1.5). When the lens is in	nmersed in a liquid of refractive			
index 1.25, the focal length						
a) Increase by a fac		b) Increases by a	factor of 2.5			
c) Increases by a fa		d) Decreases by a				
	425. A student can distinctly see the object upto a distance 15 <i>cm</i> . He wants to see the black board at a distance					
of 3 m. Focal length and power of lens used respectively will be						
a) -4.8 cm , $-3.3 D$ b) -5.8 cm , $-4.3 D$ c) -7.5 cm , $-6.3 D$ d) -15.8 cm , $-6.3 D$						
426. A source is at 4m height above the centre of a circular table of a circular table of radius 3m. The ratio of						
illuminance at O and P will be						

a) $\frac{64}{125}$

b) $\frac{125}{64}$

c) 1

d) $\frac{16}{25}$

427. At the time of total solar eclipse, the spectrum of solar radiation would be

- a) A large number of dark Fraunhoffer lines
- b) A less number of dark Fraunhoffer lines
- c) No lines at all
- d) All Fraunhoffer lines changed into brilliant colours

428. Sir C.V. Raman was awarded Nobel Prize for his work connected with which of the following phenomenon of radiation

- a) Scattering
- b) Diffraction
- c) Interference
- d) Polarization

429. A rectangular tank of depth 8 meter is full of water ($\mu = 4/3$), the bottom is seen at the depth

a) 6 m

- b) 8/3 cm
- c) 8 cm
- d) 10 cm

430. A ray of light passes through four transparent medium with refractive indices μ_1 , μ_2 , μ_3 and μ_4 as shown in the figure. The surfaces of all media are parallel. If the emergent ray CD is parallel to the incident ray AB. We must have

- a) $\mu_1 = \mu_2$
- b) $\mu_2 = \mu_3$
- c) $\mu_3 = \mu_4$
- d) $\mu_3 = \mu_1$

431. A lamp is hanging at a height of 40 cm from the centre of the table. If its height is increased y 10 cm, the illuminance of the lamp will decreased by

- a) 10%
- b) 20%
- c) 27%
- d) 36%

432. For a optical arrangement shown in the figure. Find the position and nature of images

- a) 32 cm
- b) 0.6 cm
- c) 6 cm
- d) 0.5 cm

433. In a compound microscope, the intermediate image is

a) Virtual erect and magnified

b) Real, erect and magnified

c) Real, inverted and magnified

d) Virtual, erect and reduced

434. The index of refraction of diamond is 2.0. The velocity of light in diamond is approximately

- a) $1.5 \times 10^{10} \text{cm s}^{-1}$
- b) $2 \times 10^{10} \text{cms}^{-1}$
- c) $3.0 \times 10^{10} \text{cms}^{-1}$
- d) $6 \times 10^{10} \text{cms}^{-1}$

435. The speed of light in media M_1 and M_2 is 1.5×10^8 m/s and 2.0×10^8 m/s respectively. A ray of light enters from medium M_1 to M_2 at an incidence angle i. If the ray suffers total internal reflection, the value of i is

a) Equal to $\sin^{-1}\left(\frac{2}{3}\right)$

- b) Equal to or less than $\sin^{-1}\left(\frac{3}{5}\right)$
- c) Equal to or greater than $\sin^{-1}\left(\frac{3}{4}\right)$
- d) Less than $\sin^{-1}\left(\frac{2}{3}\right)$

436. An air bubble in sphere having 4 cm diameter appears 1 cm from surface nearest to eye when looked along diameter. If $_a\mu_g=1.5$, the distance of bubble from refracting surface is

-1	1	2	
aı	1	. 4	cm

b) 3.2 cm

c) 2.8 cm

d) 1.6 cm

437. The refractive index of a material of a planoconcave lens is 5/3, the radius of curvature is 0.3 m. The focal length of the lens in air is

a) -0.45m

b) -0.6m

c) -0.75m

d) -1.0m

438. The angle of minimum deviation for an incident light ray on an equilateral prism is equal to its refracting angle. The refractive index of its material is

b) $\sqrt{3}$

c) $\frac{\sqrt{3}}{2}$

439. When a white light passes through a hollow prism, then

a) There is no dispersion and no deviation

b) Dispersion but no deviation

c) Deviation but no dispersion

d) There is dispersion and deviation both

440. A point source of light moves in a straight line parallel to a plane table. Consider a small portion of the table directly below the line of movement of the source. The illuminance at this portion varies with this distance r from the source as

a) $\propto \frac{1}{r}$

c) $\propto \frac{1}{r^3}$

441. A container is filled with water ($\mu = 1.33$) up to a height of 33.25 cm. A concave mirror is placed 15 cm above the water level and the image of an object placed at the bottom is formed 25 cm below the water level. The focal length of the mirror is

a) 10 cm

b) 15 cm

c) 20 cm

442. A, B and C are the parallel sided transparent media of refractive indices n_1 , n_2 and n_3 respectively. They are arranged as shown in the figure. A ray is incident at an angle i on the surface of separation of A and B which is as shown in the figure. After the refraction into the medium B, the ray grazes the surface of separation of the media B and C. Then, $\sin i$ equal to

443. An object is placed 30 cm to the left of a diverging lens whose focal length is of magnitude 20 cm. Which one of the following correctly states the nature and position of the virtual image formed?

Distance from lens Nature of image

a) Inverted, enlarged 60 cm to the right

b) Erect, diminished 12 cm to the left

c) Inverted, enlarged 60 cm to the left

d) Erect, diminished 12 cm to the right

444. The focal lengths of the objective and the eye piece of telescope are 100 cm and 10 cm respectively. The magnification of the telescope when final image is formed at infinity is

a) 0.1

b) 10

c) 100

d) ∞

445. Chromatic aberration of lens can be corrected by

, ,	ture		
b) Proper polishing o			
c) Suitably combining	g it with another lens		
d) Providing different	t suitable curvature to its	s two surfaces	
446. A person using a lens	as a simple microscope s	sees an	
 a) Inverted virtual im 	nage	b) Inverted real magn	nified image
c) Upright virtual ima	age	d) Upright real magn	ified image
447. In order to obtain a re	eal image of magnificatio	n 2 using a converging lens o	f focal length 20 cm, where
should an object be p	laced		
a) 50 cm	b) 30 cm	c) $-50 cm$	d) $-30 cm$
448. A biconvex lens form	a real image of an object	placed perpendicular to its p	principal axis. Suppose the radii
	ns tend to infinity. Then t		
a) Disappear	· ·	3	
b) Remain as real ima	age still		
하는 일반 가장 하는 사람들이 되었다면 하는 사람들이 살아 되었다면 하는 것이 없다면 하는데 살아 다른데 살아 되었다면 살아 없다면 하는데 살아 되었다면 살아 먹었다면 살아 없다면 살아 먹었다면 살아	ne same size as the object		
d) Suffer from aberra		=9	
		nirror. In order to produce a	n upright image of 3 cm height
one needs a	piacoa i onvinii one oi a n	rorr or der to produce di	aprigne image of a one neight
	adius of curvature 12 cm	1	
[radius of curvature 12 cr		
en de la company de la comp	radius of curvature 4 cm		
d) Plane mirror of he		*	
8		/s. What is the speed of his ir	nage
a) 7.5 m/s	b) 15 m/s	c) 30 m/s	d) 45 m/s
		, underneath a microscope w	
a and the second and a sign of the second and the s	리 1000 전에 나는 아이지 않아 가게 되었는데 없었다. 그리아 아르아 나는 아이지 않아 되었다. 그는	4a P. San T. 마음 전 4g (1) [1] 전 시청 (1) [1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	on the table when the reading on
	And the second s	and the state of t	eading is b. More liquid is added
the searc is a. It is her	it rocused on the apper s	arrace of the figure and the re	cading is b. More inquia is added
and the observations	are repeated the correst	1.50	
	are repeated, the corresp	ponding readings are \emph{c} and \emph{d}	
liquid is	8 8 8	ponding readings are \emph{c} and \emph{d}	. The refractive index of the
liquid is	8 8 8	ponding readings are \emph{c} and \emph{d}	. The refractive index of the
liquid is a) $\frac{d-b}{d-c-b+a}$	b) $\frac{b-d}{d-c-b+a}$	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$. The refractive index of the
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectru	b) $\frac{b-d}{d-c-b+a}$ um of Na the missing way	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are	The refractive index of the $d) \frac{d-b}{a+b-c-d}$
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectru a) 589 nm	b) $\frac{b-d}{d-c-b+a}$ um of Na the missing way b) 589.6 nm	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) Both$	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm onochromatic light is sam	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of	The refractive index of the $d) \frac{d-b}{a+b-c-d}$
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectru a) 589 nm 453. The optical path a more refractive index of glasses.	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm onochromatic light is samess is 1.53, the refractive	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glass a) 1.30	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) Both$ he if it goes through 4.0 cm of index of the water is $c) 1.42$	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassian 1.30 454. A square card of side	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm enochromatic light is sames is 1.53, the refractive b) 1.36 length 1mm is being seen	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ he if it goes through 4.0 cm of index of the water is $c) \text{ 1.42}$ In through a magnifying lens of the second contact of the second	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glamm a) 1.30 454. A square card of side placed at a distance of	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen for the lens. The	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of apparent area of the card through a magnifying lens of a magnifyin	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glams as 1.30 454. A square card of side placed at a distance of a) 1 cm ²	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen for the lens. The b) 0.81 cm ²	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ he if it goes through 4.0 cm of index of the water is $c) \text{ 1.42}$ In through a magnifying lens of apparent area of the card through d and d apparent d are d and d apparent d are d and d are d and d are d and d are d apparent d are d and d are d and d are d and d are d and d are d are d are d and d are d and d are d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d are d and d are d and d are d are d and d are d and d are d are d and d are d are d are d are d are d are d and d are d are d are d and d are d are d are d and d are	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ²
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassical as 1.30 454. A square card of side placed at a distance of a 1.30	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm onochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen for cm from the lens. The b) 0.81 cm ² ojective and eye-piece of a	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) Both$ he if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card through c 0.27 cm ² a microscope are 1 cm and 5	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ²
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as 1.30 454. A square card of side placed at a distance of a 1.60 a) 1.60 455. The focal length of observing power for the square power for the square power for the square 1.60 455. The focal length of observing power for the square 1.60	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conchromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² of ective and eye-piece of a relaxed eye is 45, then length 1 mm is 45, then length 2 missing seen from the lens.	c) $\frac{d-c-b+a}{d-b}$ velength (s) are c) Both ne if it goes through 4.0 cm of index of the water is c) 1.42 In through a magnifying lens of apparent area of the card thr c) 0.27 cm ² a microscope are 1 cm and 5 ength of the tube is	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the $\frac{d}{d} = \frac{1.46}{d}$ of focal length 10 cm. The card is rough the lens is $\frac{d}{d} = \frac{0.60 \text{ cm}^2}{0.60 \text{ cm}^2}$ cm respectively. If the
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as $\frac{1.30}{454}$. A square card of side placed at a distance of a $\frac{1.30}{455}$. The focal length of observing power for a $\frac{1.30}{455}$. The focal length of observing power for a $\frac{1.30}{455}$.	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm chochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² ojective and eye-piece of a relaxed eye is 45, then lend b) 15 cm	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c)$ Both the if it goes through 4.0 cm of index of the water is $c)$ 1.42 In through a magnifying lens of apparent area of the card through a microscope are 1 cm and 5 the tube is $c)$ 1.2 cm	The refractive index of the $\frac{d-b}{a+b-c-d}$ $\frac{d}{a+b-c-d}$ $\frac{d}{d}$ None of these glass of 4.5 cm of water. If the $\frac{d}{d}$ $\frac{d}{d}$ 1.46 of focal length 10 cm. The card is rough the lens is $\frac{d}{d}$ $\frac{d}{d}$ of m respectively. If the $\frac{d}{d}$
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as $\frac{1}{3}$ 454. A square card of side placed at a distance of a $\frac{1}{3}$ 455. The focal length of observing power for a $\frac{1}{3}$ 9 cm 456. Two plane mirrors are	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conchromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen form from the lens. The b) 0.81 cm ² ojective and eye-piece of a relaxed eye is 45, then left b) 15 cm reconcilined to each other and the same and the same reconcilined to each other and the same and the same reconcilined to each other and the same and the same reconcilined to each other and the same and th	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card through a microscope are 1 cm and 5 and 5 the tube is $c) 1.2 \text{ cm}$ at an angle θ . A ray of light is	The refractive index of the $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the $\frac{d}{d} = \frac{1.46}{d}$ of focal length 10 cm. The card is rough the lens is $\frac{d}{d} = \frac{0.60 \text{ cm}^2}{0.60 \text{ cm}^2}$ cm respectively. If the
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as 1.30 454. A square card of side placed at a distance of a 1 cm ² 455. The focal length of observing power for a 19 cm 456. Two plane mirrors are then at the other. The	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conchromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² of the concept of a relaxed eye is 45, then length 15 cm are inclined to each other are total deviation of the ray	c) $\frac{d-c-b+a}{d-b}$ velength (s) are c) Both ne if it goes through 4.0 cm of index of the water is c) 1.42 In through a magnifying lens of apparent area of the card thr c) 0.27 cm ² a microscope are 1 cm and 5 ength of the tube is c) 12 cm at an angle θ . A ray of light is y is	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as $\frac{1.30}{454}$. A square card of side placed at a distance of a $\frac{1.30}{455}$. The focal length of observing power for a $\frac{1.30}{456}$. Two plane mirrors are then at the other. The a $\frac{1.30}{456}$	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm chochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen for the lens. The b) 0.81 cm ² ojective and eye-piece of a relaxed eye is 45, then length 15 cm recommended in the length 15 cm recommended in the result of t	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ he if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card through a microscope are 1 cm and 5 and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is y is $c) 360^{\circ} - 2\theta$	The refractive index of the $\frac{d-b}{a+b-c-d}$ $\frac{d}{a+b-c-d}$ $\frac{d}{d}$ None of these glass of 4.5 cm of water. If the $\frac{d}{d}$ $\frac{d}{d}$ 1.46 of focal length 10 cm. The card is rough the lens is $\frac{d}{d}$ $\frac{d}{d}$ of m respectively. If the $\frac{d}{d}$
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing a) 1.30 454. A square card of side placed at a distance of a) 1 cm ² 455. The focal length of observing power for a) 9 cm 456. Two plane mirrors are then at the other. The a) 20 457. How should people were serving as the square of	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conchromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² ojective and eye-piece of a relaxed eye is 45, then length 15 cm recommendation of the ray b) 240° $-$ 20 rearing spectacles work vertical deviation of the ray of the ray of the ray be a spectacles work vertical deviation of the ray of the	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ he if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card through a microscope are 1 cm and 5 and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is y is $c) 360^{\circ} - 2\theta$	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as 1.30 454. A square card of side placed at a distance of a 1 cm ² 455. The focal length of observing power for a 1 9 cm 456. Two plane mirrors are then at the other. The a 1 20 457. How should people we a 1 They cannot use the	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conchromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² expective and eye-piece of a relaxed eye is 45, then length 15 cm are inclined to each other are total deviation of the ray b) 240° $-$ 20 rearing spectacles work when microscope at all	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card thr $c) 0.27 \text{ cm}^2$ Is a microscope are 1 cm and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is by is $c) 360^\circ - 2\theta$ with a microscope	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as $\frac{1.30}{454}$. A square card of side placed at a distance of a) $\frac{1}{2}$ 455. The focal length of observing power for a) 9 cm 456. Two plane mirrors are then at the other. The a) $\frac{20}{457}$. How should people we a) They cannot use the by They should keep of	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm chochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen for the lens. The b) 0.81 cm ² of the properties of a relaxed eye is 45, then be b) 15 cm are inclined to each other are total deviation of the ray b) 240° $-$ 20 rearing spectacles work when microscope at all on wearing their spectacles.	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card thr $c) 0.27 \text{ cm}^2$ Is a microscope are 1 cm and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is by is $c) 360^\circ - 2\theta$ with a microscope	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as 1.30 454. A square card of side placed at a distance of a) 1 cm ² 455. The focal length of observing power for a) 9 cm 456. Two plane mirrors are then at the other. The a) 20 457. How should people we a) They cannot use the b) They should keep of the control of the contro	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² elective and eye-piece of a relaxed eye is 45, then be b) 15 cm recommended to each other a retail deviation of the ray b) $240^{\circ} - 2\theta$ rearing spectacles work where microscope at all on wearing their spectacles of spectacles	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card thr $c) 0.27 \text{ cm}^2$ Is a microscope are 1 cm and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is by is $c) 360^\circ - 2\theta$ with a microscope	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as $\frac{1.30}{454}$. A square card of side placed at a distance of a) $\frac{1}{2}$ 455. The focal length of observing power for a) 9 cm 456. Two plane mirrors are then at the other. The a) $\frac{20}{457}$. How should people we a) They cannot use the by They should keep of	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² elective and eye-piece of a relaxed eye is 45, then be b) 15 cm recommended to each other a retail deviation of the ray b) $240^{\circ} - 2\theta$ rearing spectacles work where microscope at all on wearing their spectacles of spectacles	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card thr $c) 0.27 \text{ cm}^2$ Is a microscope are 1 cm and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is by is $c) 360^\circ - 2\theta$ with a microscope	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as 1.30 454. A square card of side placed at a distance of a) 1 cm ² 455. The focal length of observing power for a) 9 cm 456. Two plane mirrors are then at the other. The a) 20 457. How should people we a) They cannot use the b) They should keep of the control of the contro	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² elective and eye-piece of a relaxed eye is 45, then be b) 15 cm recommended to each other a retail deviation of the ray b) $240^{\circ} - 2\theta$ rearing spectacles work where microscope at all on wearing their spectacles of spectacles	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card thr $c) 0.27 \text{ cm}^2$ Is a microscope are 1 cm and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is by is $c) 360^\circ - 2\theta$ with a microscope	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and
liquid is a) $\frac{d-b}{d-c-b+a}$ 452. In absorption spectrum a) 589 nm 453. The optical path a more refractive index of glassing as 1.30 454. A square card of side placed at a distance of a) 1 cm ² 455. The focal length of observing power for a) 9 cm 456. Two plane mirrors are then at the other. The a) 20 457. How should people we a) They cannot use the b) They should keep of the control of the contro	b) $\frac{b-d}{d-c-b+a}$ am of Na the missing way b) 589.6 nm conochromatic light is same ass is 1.53, the refractive b) 1.36 length 1mm is being seen f9 cm from the lens. The b) 0.81 cm ² elective and eye-piece of a relaxed eye is 45, then be b) 15 cm recommended to each other a retail deviation of the ray b) $240^{\circ} - 2\theta$ rearing spectacles work where microscope at all on wearing their spectacles of spectacles	ponding readings are c and d $c) \frac{d-c-b+a}{d-b}$ welength (s) are $c) \text{ Both}$ we if it goes through 4.0 cm of index of the water is $c) 1.42$ In through a magnifying lens of apparent area of the card thr $c) 0.27 \text{ cm}^2$ Is a microscope are 1 cm and 5 ength of the tube is $c) 12 \text{ cm}$ at an angle θ . A ray of light is by is $c) 360^\circ - 2\theta$ with a microscope	d) $\frac{d-b}{a+b-c-d}$ d) None of these glass of 4.5 cm of water. If the d) 1.46 of focal length 10 cm. The card is rough the lens is d) 0.60 cm ² cm respectively. If the d) 6 cm reflected first at one mirror and

458.	Two thin lenses of focal le	engths f_1 and f_2 are placed	in contact with each other.	The focal length of the
	combination is	v		
	a) $\frac{f_1 + f_2}{2}$	b) $\sqrt{f_1}f_2$	c) $\frac{f_1 f_2}{f_2 + f_2}$	$\frac{f_1f_2}{f_1}$
	a) <u>2</u>	0) $\sqrt{J_1J_2}$	$f_1 + f_2$	$\frac{df}{f_1-f_2}$
459.	In an astronomical telesco	pe in normal adjustment, a	a straight black line of lengt	th L is drawn on the
	3 T	ce forms a real image of thi	is line. The length of this im	age is $\it l$. The magnification
	of the telescope is			
	a) $\frac{L}{I}$	b) $\frac{L}{l} + 1$	c) $\frac{L}{l} - 1$	d) $\frac{L+l}{l}$
	ı	· ·		
400.		(57)	al centre of a thin lens. Its in object. The height of the im	
	a) 2.5 cm	b) 0.2 cm	c) 16.7 cm	d) 37.5 cm
461		The Application of the same and	n. If the whole atmosphere i	"하게 되었으면 맛요? - 싫었어요?
401.	light will take the time ($a\mu$		i. If the whole atmosphere	is filled with water, the
	a) 8 min 20 s	b) 8 min	c) 6 min 11 s	d) 11 min 6 s
462			What is the wavelength and	15
102.	glass of refractive index 1.		What is the wavelength and	speed of this colour in
	a) 500 nm and 2×10^{10} cm		b) 400 nm and 2×10^8 ms	-1
	c) 300 nm and 3 \times 10 cm		d) 700 nm and 1.5×10^9 n	
463			thin concave lens ($f = 9c$	
100.	a) A concave lens ($f = 18$		b) A convex lens $(f = 18)$	
	c) A convex lens ($f = 6 cr$	557	d) A concave lens ($f = 6$	0.73
464.	, 그래픽 10일 1시간 시간 내용 보다를 하고 하다 하다 때 바람이 보는 것이 없다고	50.50 Santan 20 Santan 20 Santan	ay is incident at an angle 3	
		ond refracting surface of th		,g
	a) 0°	b) 30°	c) 45°	d) 60°
465.			The value of critical angle is	
	a) 45°	b) 90°	c) 65°	d) 43.2°
466.	Red colour is used for dan	ger signals because		
	a) It causes fear		b) It undergoes least scatt	ering
	c) It undergoes maximum	scattering	d) It is in accordance with	international convention
467.	A convex mirror and a cor	ncave mirror has radii of cu	ırvature 10 cm each are pla	ced 15 cm apart facing
	each other. An object is pla	aced midway between thei	n. If the reflection first take	es place in the concave
	mirror and then in convex	mirror, the position of the	final image is	
	a) on the pole of the conve	ex mirror	b) on the pole of the conca	ave mirror
	c) at a distance of 10 cm f	rom convex mirror	d) at a distance of 5 cm from	om concave mirror
468.	An optical fibre consists o	f core of μ_1 surrounded by	a cladding of $\mu_2 < \mu_1$. A be	am of light enters form air
	at an angle α with axis of f	fibre. The highest $lpha$ for whi	ich ray can be travelled thro	ough fibre is
	μ ₁			
	7	(27)	c) $\tan^{-1} \sqrt{\mu_1^2 - \mu_2^2}$	12
469.	1876		the pole of a concave mirro	or of focal length f . The
	diameter of the image of s	경기의 (1200명) 전혀 1200명이 함께 2005년 120명이 1 120명이 120명이 12		
	a) θ <i>f</i>	b) $\frac{\theta}{2} f$	c) 20 f	$d)\frac{\theta}{\pi}f$
470.	The diameter of the object power would be approxim		netre and wavelength of li	ght is 6000 Å. Its resolving

a) $7.32 \times 10^{-6} rad$ b) $1.36 \times 10^{6} rad$ c) $7.32 \times 10^{-5} rad$

d) $1.36 \times 10^5 rad$

471.	A ray of light is incident	at the glass-water interface	e at an angle <i>i</i> it emerges fir	nally parallel to the surface of
	water, then the value of		8	
	7			
	Water			
		Pi		
	Glass			
	a) (4/3) sin i	b) 1/ sin i	c) 4/3	d) 1
472.	Angle of deviation (δ) by	a prism (refractive index	$=\mu$ and supposing the ang	gle of prism A to be small) can
	be given by		37.523	
	36 (4)4	13.0 (, 4).4	$\sin \frac{A+\delta}{2}$	$\mu - 1$
	a) $\delta = (\mu - 1)A$	b) $\delta = (\mu + 1)A$	c) $\delta = \frac{2}{\sin \frac{A}{2}}$	d) $\delta = \frac{1}{\mu + 1}A$
473.		is used to enlarge an object	-	
	70 T	x lenses in contact and has	· · · · · · · · · · · · · · · · · · ·	
		ive, then by what distance		
	refocus the image			
	a) 2.5 cm	b) 6 cm	c) 15 cm	d) 9 cm
474.	A cut diamond sparkles	pecause of its		
	a) Hardness		b) High refractive index	
	c) Emission of light by the	ie diamond	d) Absorption of light by	y the diamond
475.	The second of the property of the second	, with the position of the ol	angarahan meridik kacamatan kempanan araw arikan dibang-arikit	figure programme in the control of t
		n, the screen is adjusted to		
				same scale for the two axes.
		rough the origin and making		x-axis meets the
	experimental curve at P.	The coordinates of Pwill b		
	a) $(2f, 2f)$	b) $\left(\frac{f}{2}, \frac{f}{2}\right)$	c) (f,f)	d) $(4f, 4f)$
476.	A compound microscope	has an eyepiece of focal le	ngth 10 cm and an objectiv	ve of focal length 4 cm.
	5 5 5 5 5 5	7. ST.	. TV	objective, so that final image
	그 마음 이 이 아들은 이 명이 되었다. 하는 아들이 아들이 살아 있다면 하는데 되었다.	tance of distinct vision 20 o		
	a) 12	b) 11	c) 10	d) 13
477.	A lamp is hanging at a he	eight of $4m$ above a table. T	the lamp is lowered by $1m$.	The percentage increase in
	illuminance will be			
	a) 40%	b) 64%	c) 78%	d) 92%
478.	and the same and the control of the first of the control of the co	ings most clearly at a dista	네가게 한 아이의 원으에 연극했다면 하면 맛있었다니다 사업이 되고 아니겠다. 맛있	
		stance of 30 <i>cm</i> . What shou		
	a) 15 cm (Concave)	b) 15 <i>cm</i> (Convex)	c) 10 cm	d) 0
479.	The spectrum of an oil fl			
	a) Line emission spectru		b) Continuous emission	
400	c) Line absorption spect		d) Band emission spectr	
480.	is correct?	ength / forms a circular im	age of radius rot sun in too	cal plane. Then which option
	a) $\pi r^2 \propto f$			
	b) $\pi r^2 \propto f^2$			
		vered by black sheet, then	area of the image is equal	$\tan \pi r^2 / 2$
	d) If f is doubled, intensi	[발표 (STREET)] : [발표] [발표] [STREET STREET	area of the image is equal	10 117 / 2
481.	경기 경우 (1) 시간 경우 시간 10 전에 보다는 사용되었다. 경우 10 전에 보면 10 전에 보다 보다 보다 보다 보다 보다 보다. 10 전에 보다		in 2 cm. Focal length of le	ns when immersed in a liquid
	of refractive index of 1.2		**************************************	**************************************
	a) 10 cm	b) 2.5 <i>cm</i>	c) 5 cm	d) 7.5 cm
	1978	950)	Ø.	M.)

CLICK HERE >>>

482. When a plane electroma	agnetic wave enters a glass:	slab, then which of the follo	wing will not change?
a) Wavelength	b) Frequency	c) Speed	d) Amplitude
483. A thick plane mirror sho	ows a number of images of t	the filament of an electric b	ulb. Of these, the brightest
image is the			
a) First	b) Second	c) Fourth	d) Last
484. To get three images of a	single object, one should h	ave two plane mirrors at an	angel of
a) 60°	b) 90°	c) 120°	d) 30°
485. When the length of a mi	croscope tube increases, its	magnifying power	
a) Decreases		b) Increases	
c) Does not change		d) May decrease or incre	ase
486. Focal length of a convex	lens will be maximum for		
a) Blue light	b) Yellow light	c) Green light	d) Red light
487. The focal lengths of the	objective and of the eye-pie	ece of a compound microsco	ppe are f_0 and f_e
respectively. If L is the t	ube length and D, the least	distance of distinct vision, t	hen its angular
	image is formed at infinity		
a) $\left(1 - \frac{L}{f_0}\right) \left(\frac{D}{f_e}\right)$	b) $\left(1 + \frac{L}{f_0}\right) \left(\frac{D}{f_e}\right)$	c) $\frac{L}{f_0} \left(1 - \frac{D}{f_e} \right)$	d) $\frac{L}{f_0} \left(\frac{D}{f_e} \right)$
488. Given the width of aper	ture = 3 mm and λ = 500 m	m. For what distance ray op	otics is good approximation
a) 18 m	b) 18 mm	c) 18 Å	d) 18 light years
489. A fish in water (refractive	ve index n) looks at a bird v	ertically above in the air.If	y is the height of the bird
and x is the depth of the	e fish from the surface, then	the distance of the bird as	estimated by the fish is
a) $x + y \left(1 - \frac{1}{n}\right)$	b) $x + ny$	c) $x + y \left(1 + \frac{1}{n}\right)$	d) $y + x \left(1 - \frac{1}{n}\right)$
490. A man standing in a swi	mming pool looks at a stone	e lying at the bottom. The d	epth of the swimming pool
is h. At what distance from	om the surface of water is t	he image of the stone forme	ed (Line of vision is normal;
Refractive index of water	er is n)		
a) h/n	b) n/h	c) h	d) <i>hn</i>
491. A thin prism <i>P</i> of refrac	ting angle 3° and refractive	index 1.5 is combined with	another thin prism Qof
refractive index 1.6 to p	roduce dispersion without	deviation. Then the angle o	f prism Q is
a) 3°	b) 4°	c) 3.5°	d) 2.5°
492. The communication usi	•		
 a) Total internal reflect 	ion	b) Brewster angle	
c) Polarization		d) Resonance	
493. The light ray is incidence	restitute de la companya de la comp		film and film of frequency of films appears a majority appears of films
surface at 90°, the refra	ctive index of the material o	of prism μ and the angle of c	leviation δ are given by
a) $\mu = \sqrt{2}, \delta = 30^{\circ}$	b) $\mu=1.5, \delta=15^{\circ}$	c) $\mu = \frac{\sqrt{3}}{2}, \delta = 30^{\circ}$	d) $\mu = \sqrt{\frac{3}{2}}, \delta = 15^{\circ}$
494. A ray PQ incident on the	e refracting face BAis refrac	ted in the prism BACas sho	wn in the figure and
	refracting face ACas RS,suc	and the second s	
	naterial of prism is $\sqrt{3}$, then		
A			- 1 m, 10
ĺ.			
60° R			
Q	^A S		
//			
1			

b) 45°

c) 30°

d) None of these

a) 60°

502. When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it acts as a plane sheet of glass. This implies that the liquid must have refractive index

a) Equal to that of glass

b) Less than one

c) Greater than that of glass

d) Less than that of glass

503. The focal length of the objective lens of a compound microscope is

a) Equal to the focal length of its eye piece

b) Less than the focal length of eye piece

c) Greater than the focal length of eye piece

d) Any of the above three

504. The focal length of a convex lens depends upon

a) Frequency of the light ray

b) Wavelength of the light ray

c) Both (a) and (b)

d) None of these

505. The power of a biconvex lens is 10 dioptre and the radius of curvature of each surface is 10 cm. Then the refractive index of the material of the lens is

b) 4/3

c) 9/8

d) 5/3

506. The working of which of the following is similar to that of a slide projector

a) Electron microscope

b) Scanning electron microscope

c) Transmission electron microscope

d) Atomic force microscope

507. If the focal length of the eye piece of a telescope is double, its magnifying power m_1 will be

a) 2m

b) 3m

508. A ray of light is incident at 60° on one face of a prism which has angle 30°. The angle between the emergent ray and incident ray is 30°. What is the angle between the ray and the face from which its emerg?

a) 0°

b) 30°

c) 60°

d) 90°

500 C.W. 1 1 50 1.			
509. Critical angle of light pas	1000		D W1-61
a) Red colour	b) Green colour	c) Yellow colour	d) Violet colour
510. Which of the following el		nanching from the manner of the manner of the second	D 0
a) Hydrogen	b) Oxygen	c) Helium	d) Ozone
511. One face of a rectangular			
	hind the silvered face. The		
a) 0.4	b) 0.8	c) 1.2	d) 1.6
512. Pick out the correct state	4일 및 BANGON BANGON BOOK BOOK BOOK BOOK BOOK BOOK BOOK BO	100 P. C. L. L. C. L. L. C. L. C	
	ed for the transmission of o	그것 그것 하다 이번 이번 중에 가게 없는 이렇게 되었다.	
_	ed for transmitting and rece		
	signals sent through optical		
/T	vely employ the principle o	3.7%	
" 프랑크 및 및 및 및 프로그램 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및	ss fibres coated with a thin	그리막 생물이 되었다. 그렇게 하는 이 얼굴하는 것이 없는 아이들이 하는 것이 되었다. 이 사람이 없는데	
a) S1 and S2	b) S2 and S3	c) S3 and S4	d) S2, S3, S4 and S5
513. The least angle of deviati		al to its refracting angle. Th	e refractive index of glass is
1.5. Then the angle of pri		/2\	/25
a) $2\cos^{-1}(\frac{3}{4})$	b) $\sin^{-1}\left(\frac{3}{4}\right)$	c) $2\sin^{-1}\left(\frac{3}{2}\right)$	d) $\cot^{-1}\left(\frac{3}{2}\right)$
514. In an experiment to dete	(4)	(2)	(2)
-	the principle axis at a dist		
	om a distance keeping his/		35
1000	the image appears to the r		ien die student sints
a) $x < f$	b) $f < x < 2f$	and the figure of the contract of the first of the contract of	d) $x > 2f$
515. Two convex lenses of foc			
	r to obtain an image at infir		cope. The distance kept
a) 0.35 cm	b) 0.25 cm	c) 0.175 m	d) 0.15 m
516. A thin lens made of glass			
Name 1	a liquid of refractive index		
a) −0.5 <i>D</i>	b) +0.5 <i>D</i>	c) $-0.625 D$	d) +0.625 D
517. For unit magnification, th			ST 1
a) 20 cm	b) 10 <i>cm</i>	c) 40 cm	d) 60 cm
518. The critical angle of the r		17.	
10 ⁸ ms ⁻¹ , the velocity of l		dam is so the the velocity (ingire in vacadin is 5 x
a) $2 \times 10^8 \text{ms}^{-1}$	b) $1.5 \times 10^8 \text{ms}^{-1}$	c) $3 \times 10^8 \text{ms}^{-1}$	d) $\sqrt{2} \times 10^8 \text{ ms}^{-1}$
519. Large aperture of telesco		cj 5 × 10 ms	d) V2 × 10 IIIS
a) Large image	pe are used for	b) Greater resolution	
c) Reducing lens aberrat	ion	d) Ease of manufacture	
520. If the focal length of the o		13-11-50-1011-011-111-11-11-11-11-11-11-11-11-1	
	nicroscope will increase bu		rease
	nicroscope and telescope b	56	cuso
	nicroscope and telescope b		
	nicroscope will decrease by		rease
521. A lens of power +2 diopt	[20] 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
behave like	,, , , , , , , , , , , , , , , , , , , ,		
a) A divergent lens of foc	al length 50 cm		
b) A convergent lens of fo			
c) A convergent lens of fo			
d) A divergent lens of foo	어떤 귀를 보고 있었다. 이번 시간 이번 시간		
522. The sensation of vision in	and Make a constant difference and favorable constant.	e brain by	
a) Ciliary muscles	b) Blind spot	c) Cylindrical lens	d) Optic nerve
	A Marine St. Marine St. Nation 2	A STATE OF THE STA	and the result of the second o

CLICK HERE >>>

523.	A ray of light is incident a	t an angle of incidence <i>i</i> , or	one face of a prism of angl	e A (assumed to be small)
	and emerges normally fro	m the opposite face. If the	refractive index of the pris	m is μ , the angle of
	incidence i, is nearly equa			
	a) μ A	b) $\frac{\mu A}{2}$	c) A/µ	d) $A/2\mu$
524	The dienersive nowers of	2	achromatic pair are in the	ratio 5: 3. If the focal length
324.	트라이탈 : [1] : 프리크 1887년 : 1882년	44 - 1 00 - 100	al length of the other lens v	(2018년 1월 1일
	a) Convex, 9 cm	b) Concave, 9 cm	c) Convex, 25 cm	d) Concave, 25 cm
525	CONTRACTOR			face. The refractive index of
020.		ngth of the refracted light i		dec. The rendedive mack of
	a) 589 nm	b) 443 nm	c) 333 nm	d) 221 nm
526.	The Cauchy's dispersion f		·, · · · · · · · · · · · · · · · · · ·	,
			c) $n = A + B\lambda^{-2} + C\lambda^4$	d) $n = A + B\lambda^2 + C\lambda^4$
527.	1.2	d with a line emission spec		TO CONTRACTOR CONTRACTOR STREET
	a) Electric fire	b) Neon street sign	c) Red traffic light	d) Sun
528.	Dark lines on solar spectr		, ,	and the second s
	a) Lack of certain element			
	b) Black body radiation			
	c) Absorption of certain v	vavelengths by outer layers	S	
	d) Scattering	5 30 3		
529.	A convex lens of focal leng	gth 10 cm and image forme	d by it, is at least distance of	of distinct vision then the
	magnifying power is			
	a) 3.5	b) 2.5	c) 1.5	d) 1.4
530.	Given a point source of lig	tht, which of the following	can produce a parallel bean	n of light
	a) Convex mirror		b) Concave mirror	
	c) Concave lens		d) Two plane mirrors incl	ined at an angle of 90°
531.	Missing lines in a continue			
	a) Defects of the observin	* * (Color of the transport of the t		
	b) Absence of some eleme			
		ource of hot vapours of som		
	51	rs of some elements aroun	70	
532.			of a convex mirror of focal	length 2.0 m on its axis so
		come half of his original he		
	a) -2.60m	b) -4.0m	c) -0.5m	d) -
				2.0m
E22	An infinitaly long rad lies	along the axis of concave n	nirror of focal length f . The	near and of the radic at a
<i>ააა.</i>	U.E. 1/20	mirror. Then the length of	757 PSA	thear end of the rou is at a
	- 10	52-52-55		f^2
	a) $\frac{f^2}{x+f}$	b) $\frac{f^2}{x}$	c) $\frac{xf}{x-f}$	d) $\frac{f^2}{x-f}$
		filled with liquid appear s	2555 X	<i>x</i> 1
551.	a) Refraction	b) Interference	c) Diffraction	d) Reflection
535.			it is f_R , its focal length for t	15 N
000.	a) f_R	b) Greater than f_R	c) Less than f_R	d) 2 f_R
536.		5000 (100m) 설계 전기 100m (100m) 설명 및 및 및 전기 200 (200 H) 및 및 전기 200 (200 H) 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및	of refraction $n(A)$ passes	COLUMN TO THE CO
			of incidence is greater than	
			Then which of the following	
	a) $v(A) > v(B)$ and $n(A)$	- A	b) $v(A) > v(B)$ and $n(A)$	
	c) $v(A) < v(B)$ and $n(A)$		d) $v(A) < v(B)$ and $n(A)$	
	and the control of the second	vertication and i	we control to the control to the control of	* ************************************

537. For compound microscope $f_0=1\,\mathrm{cm}$, $f_e=2.5\,\mathrm{cm}$. An object is placed at distance 1.2 cm from object lens. What should be length of microscope for normal adjustment? a) 8.5 cm b) 8.3 cm d) 6.3 cm 538. A person's near point is 50 cm and his far point is 3 m. Power of the lenses he requires for (i) reading and (ii) for seeing distant stars are a) -2 D and 0.33 D b) 2 D and -0.33 Dc) -2D and 3Dd) 2D and -3D539. If the refractive indices of crown glass for red, yellow and violet colours are 1.5140, 1.5170 and 1.5318 respectively and for flint glass these are 1.6434, 1.6499 and 1.6852 respectively, then the dispersive powers for crown and flint glass are respectively a) 0.034 and 0.064 b) 0.064 and 0.034 c) 1.00 and 0.064 d) 0.034 and 1.0 540. The respective angles of the flint and crown glass prisms are A' and A. They are to be used for dispersion without deviation, then the ratio of their angles A'/A will be a) $-\frac{(\mu_y - 1)}{({\mu_y}' - 1)}$ d) $(\mu_y - 1)$ c) $(\mu_{\nu}' - 1)$ 541. Venus looks brighter than other stars because a) It has higher density than other stars b) It is closer to the earth than other stars c) It has no atmosphere d) Atomic fission takes place on its surface 542. In Gallilean telescope, if the powers of an objective and eye lens are respectively +1.25 D and -20 D, then for relaxed vision, the length and magnification will be b) 75 cm and 20 c) 75 cm and 16 d) 8.5 cm and 21.25 a) 21.25 cm and 16 543. The angular resolution of a 10 cm diameter telescope at a wavelength of 5000 Å is of the order b) 10^{-2} rad c) 10^{-4} rad a) 10^6 rad d) 10^{-6} rad 544. Refractive index of the material of a prism is 1.5. If $\delta_m = A$, what will be a value of angle of the given (where δ_m = minimum deviation; A = angle of prism) b) 41.4° c) 48.6° d) 90° 545. The minimum temperature of a body at which it emits light is b) 1000°C d) 200°C c) 500°C 546. A point object is placed at distance of 20 cm from a thin planoconvex lens of focal length 15 cm. The plane surface of the lens is now silvered. The image created by the system is at a) 60 cm to the left of the system b) 60 cm to the right of the system c) 12 cm to the left of the system d) 12 cm to the right of the system 547. A circular disc of which 2/3 part is coated with yellow and 1/3 part is with blue. It is rotated about its central axis with high velocity, then it will be seen as b) Brown c) White 548. The maximum magnification that can be obtained with a convex lens of focal length 2.5 cm is (the least distance of distinct vision is 25 cm) b) 0.1 c) 62.5 d) 11 549. The spectrum of light emitted by a glowing solid is a) Continuous spectrum b) Line spectrum c) Band spectrum d) Absorption spectrum 550. Resolving power of a microscope depends upon a) The focal length and aperture of the eye lens

- c) The apertures of the objective and the eye lens
- d) The wavelength of light illuminating the object
- 551. A lens when placed on a plane mirror then object needle and its image coincide at 15 cm. The focal length of the lens is

a) 15 cm

b) 30 cm

c) 20 cm

552. A point source of light is placed 4 m below the surface of water of refractive index 5/3. The minimum diameter of a disc, which should be placed over the source, on the surface of water to cut-off all light coming out of water

a) Infinite

b) 6 m

c) 4 m

d) 3m

553. A vessel of depth 2d cm is half filled with a liquid of refractive index μ_1 and the upper half with a liquid of refractive index μ_2 . The apparent depth of the vessel seen perpendicularly is

b) $d\left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right)$

c) $2d\left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right)$

d) $2d\left(\frac{1}{\mu_1\mu_2}\right)$

554. A man is suffering from colour blindness for green colour. To remove this defect, he should use goggles of

a) Green colour glasses

b) Red colour glasses

c) Smoky colour glasses d) none of the above

555. A point object O is placed on the principal axis of a convex lens of focal length 20 cm at a distance of 40 cm to the left of it. The diameter of the lens is 10 cm. If the eye is placed 60 cm to the right of the lens at a distance h below the principal axis, then the maximum value of h to see the image will be

b) 5 cm

c) 2.5 cm

d) 10 cm

556. An endoscope is employed by a physician to view the internal parts of a body organ. It is based on the principle of

a) Refraction

b) Reflection

c) Total internal reflection

d) Dispersion

557. Which of the following is true for rays coming from infinity?

a) Two images are formed

b) Continuous image is formed between focal points of upper and lower lens

c) One image is formed

d) None of the above

558. Ability of the eye to see objects at all distances is called

a) Binocular vision

b) Myopia

c) Hypermetropia

d) Accommodation

559. The length of the compound microscope is 14 cm. The magnifying power for relaxed eye is 25. If the focal length of eye lens is 5 cm, then the object distance for objective lens will be

a) 1.8 cm

b) 1.5 cm

c) 2.1 cm

d) 2.4 cm

560. A Gallilean telescope has objective and eye-piece of focal lengths 200 cm and 2 cm respectively. The magnifying power of the telescope for normal vision is

a) 90

b) 100

c) 108

561. For a concave mirror, if virtual image is formed, the graph between m and u is of the form

574 A convey lens of	focal length f is placed some	where in hetween an ohi	ect and a screen. The distance
	(175 전환) 전환기	177	duced by lens is <i>m</i> , focal length of
lens is	nd screen is x. ii numericar	value of magnification pro	duced by lens is m, local length of
	mx	$(m + 1)^2$	$(m-1)^2$
a) $\frac{mx}{(m+1)^2}$	b) $\frac{mx}{(m-1)^2}$	c) $\frac{(m+1)}{m}x$	d) $\frac{(m-1)^2}{m}x$
575. If aperture of len	s is halved then image will b		m.
a) No effect on si		b) Intensity of im	age decreases
c) Both (a) and (d) None of these	
ST0 (10.05) (1	: TO	(50)	meter $3 m$ at a height of $2 m$. It is
			that theillumination at the centre of
	er <u>a</u> nden filmmelik ander er filmmelik filmfannskingen andaliskanner.	nan na anakhin sa an andhalish an an an an bhitig a <u>ta</u> dh an an an a	nes X times the original. Then X is
a) 1/3	b) 16/27	c) 1/4	d) 1/9
	roduces a magnification of		
a) -1	b) +1	c) Zero	d) Infinite
1.73	ming pool wants to signal h	is distress to a person lyin	g on the edge of the pool by flashing
his water proof f	ash light	son Digital reference é de l'entre e le l'⊕ entre de détaché . ₹0000	
a) He must direc	t the beam vertically upward	ls	
b) He has to dire	ct the beam horizontally		
670	ct the beam at an angle to the total internal reflection	e vertical which is slightly	less than the critical angle of
d) He has to dire	ction the beam at an angle to	the vertical which is sligh	ntly more than the critical angle of
incidence for t	he total internal reflection		
579. In order to increa	ase the angular magnification	n of a simple microscope,	one should increase
a) The object size	2	b) The aperture of	of the lens
c) The focal leng	th of the lens	d) The power of t	the lens
580. A ray of light is in	ncident normally on one of th	ne face of a prism of angle	30° and refractive index $\sqrt{2}$. The
angle of deviation	n will be		
a) 26°	b) 0°	c) 23°	d) 15°
581. Inverse square la	w for illuminance is valid fo	r	
a) Isotropic poin	t source	b) Cylindrical sou	irce

c) Search light

- d) All type of sources
- 582. The refractive index and the permeability of a medium are respectively 1.5 and $5 \times 10^{-7} Hm^{-1}$. The relative permittivity of the medium is nearly
 - a) 25

b) 15

c) 81

- d) 6
- 583. Deviation of 5° is observed from a prism whose angle is small and whose refractive index is 1.5. The angle of prism is
 - a) 7.5°
- b) 10°

c) 5°

- d) 3.3°
- 584. An object is placed at a distance of 10cm from a convex lens of power 5D. Find the position of the image
 - aj –20 *cm*
- b) 30 cm
- c) 20 cm
- d) −30 *cm*
- 585. Three right angled prisms of refractive indices n_1 , n_2 and n_3 are fixed together using an optical glue as shown in figure. If a ray passes through the prisms without suffering any deviation, then

- a) $n_1 = n_2 = n_3$
- b) $n_1 = n_2 \neq n_3$
- c) $1 + n_1 = n_2 + n_3$
- d) $1 + n_2^2 = n_1^2 = n_3^2$
- 586. A double convex lens made out of glass (refractive index $\mu=1.5$) has both radii of curvature of magnitudes 20 cm. Incident light rays parallel to the axis of this lens will converge at a distance d such that
 - a) d = 10 cm
- b) $d = \frac{20}{3}$ cm
- c) d = 40 cm
- d) d = 20 cm

587 A dentist has a small	mirror of focal length 16 mm.	He views the cavity in the t	rooth of a patient by holding
	nce of 8 mm from the cavity. T		tooth of a patient by nothing
a) 1	b) 1.5	c) 2	d) 3
	$\mu = 1.5$) of focal length +10 c		
length is	1.5) of local length 110 c	m is minicised in water (μ	= 1.33).The new local
a) 20 cm	b) 40 cm	c) 48 cm	d) 12 cm
(18)	incident normally on one refi	· · · · · · · · · · · · · · · · · · ·	45
of the material of the		acting surface of all equila	terar prism (Ken active midex
a) Emerging ray is de	(1) # 1		
b) Emerging ray is de			
		c.	
	grazes the second refracting s		
77 - 77	s total internal reflection at the	e second refracting surface	
590. Which has more lum	inous efficiency	b) A 40 W/ florence by	T
a) A 40 W bulb		b) A 40 W fluorescent tu	ibe
c) Both have same		d) Cannot say	
	lection to take place, the angle	of incidence i and the refra	ictive index μ of the medium
must satisfy the ineq			
a) $\frac{1}{\sin i} < \mu$	b) $\frac{1}{\sin i} > \mu$	c) $\sin i < \mu$	d) $\sin i > \mu$
Sint	sin <i>i</i> convex lens is 10 <i>cm</i> and its re		radius of curvature of one
	radius of curvature of the sec		radius of curvature of one
	b) 15.0 <i>cm</i>	c) 75 <i>cm</i>	d) 5.0 cm
a) 7.5 cm			
	ed with a mirror as shown in f	igure. If the space between	them is filled with water is
power will			
a) Decrease			
b) Increase			
c) Remain unchange		0 % ₩3	
그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	ase depending on the focal len	The state of the s	
	re at right angles to each other		
	w many of the images will he b		
a) None	b) 1	c) 2	d) 3
	magnification was found to be	-	object was 0.15 m distant
	listance was 0.2 m. The focal le	1374	
a) 1.5 m	b) 0.20 m	c) 0.10 m	d) 0.05 m
596. Dispersion of light is			75.20
a) Wavelength	b) Intensity of light	c) Density of medium	d) None of these
1/2/ 2/ 27	ed mid-way between two plar	2)	
	nages due to multiple reflectio	n. The distance between the	e <i>n</i> th order image formed in
the two mirrors is	Q120000	N2 1949.1	200
a) na	b) 2 <i>na</i>	c) na/2	d) n^2a
The same of the sa	y of a lamp is 2 lumen/watt an	d its luminous intensity is	12 candela, then power of the
lamp is			
a) 62 W	b) 76 W	c) 1.38 W	d) 264 W
599. A plane mirror reflec	ts a pencil of light to form a re	eal image. Then the pencil o	f light incident on the mirror
is			
a) parallel	b) convergent	c) divergent	d) Any of these
	t normally on one face of a rig		t them grazes the
hypotenuse. The refr	active index of the material of	the prism is	

CLICK HERE >>>

a) 1.33	b) 1.414	c) 1.5	d) 1./32
601. A glass slab of thi	ckness 3 cm and refractive	index 3/2 of placed on ink	mark on a piece of paper. For a
person looking at	the mark at a distance 5.0	cm above it, the distance of	f the mark will appear to be
a) 3.0 cm	b) 4.0 cm	c) 4.5 cm	d) 5.0 <i>cm</i>
602. A source of light 6	mits a continuous stream o	of light energy which falls o	n a given area. Luminous inten

- 602. A source of light emits a continuous stream of light energy which falls on a given area. Luminous intensity is defined as
 - a) Luminous energy emitted by the source per second
 - b) Luminous flux emitted by source per unit solid angle
 - c) Luminous flux falling per unit area of a given surface
 - d) Luminous flux coming per unit area of an illuminated surface
- 603. Two plane mirrors are inclined to each other such that a ray of light incident on the first mirror and parallel to the second is reflected from the second mirror parallel to the first mirror. The angel between the two mirrors is
 - a) 30° b) 45° c) 60° d) 75°
- 604. A defective eye cannot see close objects clearly because their image is formed
 a) On the eye lens
 c) On the retina
 d) Beyond retina
- 605. If the red light is replaced by blue light illuminating object in a microscope the resolving power of the microscope
- a) Decreases b) Increases c) Gets halved d) Remains unchanged 606. For a concave mirror, if real image is formed the graph between $\frac{1}{n}$ and $\frac{1}{n}$ is of the form

607. In the adjoining diagram, a wavefront AB, moving in air is incident on a plane glass surface XY. Its position CD after refraction through a glass slab is shown also along with the normal drawn at A and D. The refractive index of glass with respect to air $(\mu = 1)$ will be equal to

a) $\frac{\sin \theta}{\sin \theta'}$

b) $\frac{\sin\theta}{\sin\phi'}$

c) $\frac{\sin \phi'}{\sin \theta}$

d) $\frac{AB}{CD}$

608. Consider the situation shown in figure. Water $\left(\mu_w = \frac{4}{3}\right)$ is filled in a beaker upto a height of 10 cm. A plane mirror fixed at a height of 5 cm from the surface of water. Distance of image from the mirror after reflection from it of an object O at the bottom of the beaker is

a) 15 cm

b) 12.5 cm

c) 7.5 cm

d) 10 cm

609. A sitting sun appears to be at an altitude higher than it really is. This is because of

a) Absorption of light

b) Refection of light

c) Refraction of light

d) Dispersion of light

610. The minimum magnifyir magnifying power will b	NT (7)	1, If the focal length of its ey	e lens is halved, the
a) M/2	b) 2 <i>M</i>	c) 3 M	d) 4 M
611. The time required for th			
	peed of light in free space).		1.5) of thickness 4iiiii
a) 2×10^{-5} s	b) 2×10^{11} s		d) 10^{-11} s
612. Find the luminous inten			,
	at a distance $0.3 m$. The dist		
a) $25 \times 10^{22} cd$		c) $25 \times 10^{26} cd$	
613. A ray of light passes thro		And the second s	
	r is equal to $\frac{3}{4}$ the angle of p		그 그리고 그리고 그리고 그리고 그리고 그리고 그리고 그리고 그리고 그리
a) 25°	b) 30°	c) 45°	d) 35°
614. Solar spectrum is an exa	•	C) 43	u) 33
a) Band absorption spec		b) Line absorption spect	rum
c) Line emission spectru		d) Continuous emission	
615. If there had been one ey		aj continuous cinission	spectrum
	ould have been inverted		
b) Visible region would			
	t been seen three dimensio	nal	
d) (b) and (c) both			
616. The focal lengths for vio	let, green and red light rays	s are f_V , f_G and f_R respectiv	ely. Which of the following is
the true relationship			
	b) $f_V < f_G < f_R$		
617. A thin lens has focal leng			
central part of the apert	ure upto diameter $\frac{d}{2}$ is bloch	ked by an opaque paper. Th	ne focal length and image
intensity will change to	(£)		
	b) f and $\frac{1}{4}$	c) $\frac{3f}{}$ and $\frac{I}{}$	d) f and $\frac{3I}{}$
618. In a laboratory four con-			
			g power 4. The objective and
eye lenses are respective	CAC	ingen 10 cm and magnifying	5 power in the objective and
a) L_2 , L_3	b) L ₁ , L ₄	c) L_1 , L_2	d) L_4 , L_1
619. A ray of light passes from	20 00		
	tion. The angle of incidence		
a) $\cos^{-1}\left(\frac{\mu}{2}\right)$		c) $2\sin^{-1}(\mu)$	d) $2 \sin^{-1}\left(\frac{\mu}{2}\right)$
620. The sun's diameter is 1.4	$4 \times 10^9 m$ and its distance fi	rom the earth is $10^{11}m$. The	e diameter of its image,
formed by a convex lens	of focal length $2m$ will be		an a
a) 0.7 cm		b) 1.4 cm	
c) 2.8 cm		d) Zero (i.e. point image	·)
621. The human eye has a ler	is which has a		
 a) Soft portion at its cen 	tre	b) Hard surface	
c) Varying refractive inc		d) Constant refractive in	
622. There is an equiconvex g	glass lens with radius of eac	ch face as R and $a\mu_g = 3/2$	and $a\mu_w = 4/3$. If there is
water in object space an	d air in image space, then t	he focal length is	
a) 2 <i>R</i>	b) <i>R</i>	c) 3R/2	d) R^2
623. A convex and a concave	lens separated by distance	dare then put in contact. The	he focal length of the
combination			
a) Decreases	b) Increases	c) Becomes zero	d) Remains the same
624. A convex mirror is used	to form the image of an obj	ect. Then which of the follo	wing statements is wrong

CLICK HERE >>>

- a) The image lies between the pole and the focus
- b) The image is diminished in size
- c) The image is erect
- d) The image is real
- 625. What will be the colour of sky as seen from the earth, if there were no atmosphere
 - a) Black
- b) Blue
- c) Orange
- d) Red
- 626. A prism having refractive index 1.414 and refractive angle 30°has one of the refracting surfaces silvered. A beam of light incident on the other refracting surface will retrace its path, if the angle of incidence is
 - a) 45°

b) 60°

c) 30°

- 627. Three prisms of crown glass, each have angle of prism 9° and two prisms of flint glass are used to make direct vision spectroscope. What will be the angle of flint glass prisms if μ for flint is 1.60 and μ for crown glass is 1.53
 - a) 11.9°
- b) 16.0°
- c) 15.3°
- 628. The velocity of light in a medium is half its velocity in air. If ray of light emerges from such a medium into air, the angle of incidence, at which it will be totally internally reflected, is
 - a) 15°

b) 30°

- d) 60°
- 629. Following figure shows the multiple reflections of a light ray along a glass corridor where the walls are either parallel or perpendicular to one another. If the angle of incidence at point P is 30°, what are the angles of reflection of the light ray at points Q, R, S and T respectively

- a) 30°, 30°, 30°, 30°
- b) 30°, 60°, 30°, 60°
- c) 30°, 60°, 60°, 30°
- d) 60°, 60°, 60°, 60°
- 630. The focal lengths of the objective and the eye-piece of a compound microscope are 2.0 cm and 3.0 cm respectively. The distance between the objective and the eye-piece is 15.0 cm. The final image formed by the eye-piece is at infinity. The two lenses are thin. The distances in cm of the object and the image produced by the objective measured from the objective lens are respectively
 - a) 2.4 and 12.0
- b) 2.4 and 15.0
- c) 2.3 and 12.0
- d) 2.3 and 3.0
- 631. An object is at a distance of 0.5 m in front of a plane mirror. Distance between the object and image is

- c) $0.25 \, m$
- 632. Glass has refractive index μ with respect to air and the critical angle for a ray of light going from glass to air is θ . If a ray of light is incident from air on the glass with angle of incidence θ , the corresponding angle of refraction is
 - a) $\sin^{-1}\left(\frac{1}{\sqrt{u}}\right)$

- c) $\sin^{-1}\left(\frac{1}{u^2}\right)$
- d) $\sin^{-1}\left(\frac{1}{u}\right)$
- 633. A light ray from air is incident (as shown in figure) at one end of a glass fibre (refractive index $\mu = 1.5$) making an incidence angle of 60° on the lateral surface, so that it undergoes a total internal reflection. How much time would it take to traverse the straight fibre of length 1 km

- a) $3.33 \, \mu \, s$
- b) $6.67 \,\mu \,\mathrm{s}$
- c) $5.77 \,\mu$ s
- d) $3.85 \,\mu \,s$
- 634. The refractive index of the material of a double convex lens is 1.5 and its focal length is 5 cm. If the radii of curvature are equal, the value of the radius of curvature (in cm) is

b) 6.5

c) 8.0

- 635. In a compound microscope the objective of f_o and eyepiece of f_e are placed at distance L such that L equals

- 1	C		1
aı	In	+	f

b)
$$f_o - f_e$$

c) Much greater than f_o or f_e

- d) Much less than f_o or f_e
- 636. A point object O is placed in front of a glass rod having spherical end of radius of curvature 30cm. The image would be formed at

- a) 30 cm left
- b) Infinity
- c) 1 cm to the right
- d) 18 cm to the left
- 637. A thin plano-convex lens of focal f is split into two halves. One of the halves is shifted along the optical axis. The separation between object and image plane is 1.8 m. The magnification of the image formed by one of the half lens is 2. Find the focal-length of the lens and separation between the two halves

- a) 0.1 m
- b) 0.4 m
- c) 0.9 m
- d) 1 m
- 638. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
 - a) Rayleigh Jeans law

b) Planck's of law of radiation

c) Stefan's law of radiation

- d) Wien's law
- 639. A plane convex lens is made of refractive index 1.6. The radius of curvature of the curved surface is 60 cm. The focal length of the lens is
 - a) 50 cm
- b) 100 cm
- c) 200 cm
- d) 400 cm
- 640. The radius of curvature of the convex face of a planoconvex lens is 15 cm and the refractive index of the material is 1.4. Then the power of the lens in diopter is
 - a) 1.6

- b) 1.66
- c) 2.6

- d) 2.66
- 641. Wavelength of light used in an optical instrument are $\lambda_1 = 4000$ Å and $\lambda_2 = 5000$ Å, then ratio of their respective resolving powers (corresponding to λ_1 and λ_2) is
 - a) 16:25
- b) 9:1
- c) 4:5
- d) 5:4

- 642. On heating a liquid, the refractive index generally
 - a) Decreases
 - b) Increases or decreases depending on the rate of heating
 - c) Does not change
 - d) Increases
- 643. Two mirrors at an angle θ produce 5 images of a point. The number of images produced when θ is decreased to 30° is
 - a) 9

b) 10

c) 11

- d) 12
- 644. Total internal reflection of a ray of light is possible when the $(i_c = critical angle, i = angle of incidence)$
 - a) Ray goes from denser medium to rarer medium and $i < i_c$
 - b) Ray goes from denser medium to rarer medium and $i > i_c$
 - c) Ray goes from rarer medium to denser medium and $i > i_c$
 - d) Ray goes from rarer medium to denser medium and $i < i_c$
- 645. Beams of red, green and violet light are falling on the refracting face of a prism, all at the same angle of incidence, if their angles of deviation are θ_1 , θ_2 and θ_3 respectively, then
 - a) $\theta_1 = \theta_2 = \theta_3$
- b) $\theta_1 < \theta_2 < \theta_3$
- c) $\theta_1 > \theta_2 > \theta_3$
- d) $\theta_2 > \theta_1 > \theta_3$
- 646. The deviation caused in red, yellow and violet colours for crown glass prism are 2.84° , 3.28° and 3.72° respectively. The dispersive power of prism material is
 - a) 0.268
- b) 0.368
- c) 0.468
- d) 0.568
- 647. The refractive index of a material of a prism of angles $45^{\circ} 45^{\circ} 90^{\circ}$ is 1.5. The path of the ray of light incident normally on the hypotenuse side is shown in

a)

b)

c)

d)

648. A ray incident at 15° on one refracting surface of a prism of angle 60° , suffers a deviation of 55° . What is the angle of emergence

a) 95°

b) 45°

c) 30°

d) None of these

649. A transparent plastic bag filled with air forms a concave lens. Now, if this bag is completely immersed in water, then it behaves as

a) Divergent lens

b) Convergent lens

c) Equilateral prism

d) Rectangular slab

650. A graph is plotted between angle of deviation (δ) and angle of incidence (i) for a prism. The nearly correct graph is

a)

b)

c) _

- 651. At Kavalur in India, the astronomers using a telescope whose objective had a diameter of one metre started using telescope of diameter 2.54 m. This resulted in
 - a) The increase in the resolving power by 2.54 times for the same \(\lambda \)
 - b) The increase in the limiting angle by 2.54 times for the same \(\lambda \)
 - c) Decrease in the resolving power
 - d) No effect on the limiting angle
- 652. In a pond of water, a flame is held 2 m above the surface of water. A fish is at depth of 4 m from water surface. Refractive index of water is $\frac{4}{5}$. The apparent height of the flame from the eyes of fish is

a) 5.5 m

b) 6 m

c) $\frac{8}{2}$ m

d) $\frac{20}{3}$ m

653. In the visible region the dispersive powers and the mean angular deviations for crown and flint glass prisms are ω , ω' and d, d' respectively. The condition for getting deviation without dispersion when the two prisms are combined is

a) $\sqrt{\omega d} + \sqrt{\omega' d'} = 0$

b) $\omega'd + \omega d' = 0$

c) $\omega d + \omega' d' = 0$

d) $(\omega d)^2 = (\omega' d')^2 = 0$

- 654. The twinkling effect of star light is due to
 - a) Total internal reflection
 - b) High dense matter of star
 - c) Constant burning of hydrogen in the star
 - d) The fluctuating apparent position of the star being slightly different from of the star being different from the actual position of the star
- 655. Which of the following is not due to total internal reflection
 - a) Brilliance of diamond
 - b) Working of optical fibre
 - c) Difference between apparent and real depth of a pond
 - d) Mirage on hot summer days

656. A convex lens *A* of focal length 20 cm and a concave lens *B* of focal length 56 cm are kept along the same axis with the distance *d* between them. If a parallel beam of light falling on *A* leaves *B* as a parallel beam, then distances *d* in cm will be

a) 25 b) 36 c) 30 d) 50

657. A man can see the object between 15 cm and 30 cm. He uses the lens to see the far objects. Then due to the lens used, the near point will be at

a) $\frac{10}{3}$ cm

b) 30 cm

c) 15 cm

d) $\frac{100}{3}$ cm

658. Image formed by a convex lens is virtual and erect when the object is placed

a) At F

b) Between F and the lens

c) At 2F

d) Beyond 2F

659. A combination of two thin lenses with focal lengths f_1 and f_2 respectively forms an image of distant object at distance 60 cm when lenses are in contact. The position of this image shift by 30 cm towards the combination when two lenses are separated by 10 cm. The corresponding values of f_1 and f_2 are

a) $30 \, cm, -60 \, cm$

b) $20 \, cm$, $-30 \, cm$

c) $15 \, cm, -20 \, cm$

d) 12 cm, -15 cm

660. If μ_0 be the relative permeability and K_0 the dielectric constant of a medium, its refractive index is given by

a) $\frac{1}{\sqrt{\mu_0 K_0}}$

b) $\frac{1}{\mu_0 K_0}$

c) $\sqrt{\mu_0 K_0}$

d) $\mu_0 K_0$

661. In the figure, an air lens of radii of curvature 10 cm ($R_1 = R_2 = 10 cm$) is cut in a cylinder of glass ($\mu = 1.5$). The focal length and the nature of the lens is

a) 15 cm, concave

b) 15 cm, convex

c) ∞, neither concave nor convex

d) 0, concave

662. Two plane mirrors inclined to each other at an angle 72°, what is the number of image formed?

a) 3

b) 5

c) 9

d) 7

663. A light beam is being reflected by using two mirrors, as in a periscope used in submarines. If one of the mirrors rotates by an angle θ , the reflected light will deviate from its original path by the angle

a) 2θ

b) 0°

c) θ

4) 40

664. With diaphragm of the camera lens set at f/2, the correct exposure time is 1/100s. Then with diaphragm set at f/8, the correct exposure time is

a) 1/100 s

b) 1/400 s

c) 1/200 s

d) 16/100 s

665. Identify the wrong description of the below figures

a) 1 represents far-sightedness

b) 2 correction for short-sightedness

c) 3 represents far-sightedness

- d) 4 correction for far-sightedness
- 666. If a lens is cut into two pieces perpendicular to the principal axis and only one part is used, the intensity of the image
 - a) Remains same
- b) $\frac{1}{2}$ times
- c) 2 times
- d) Infinite
- 667. A ray of light travelling from glass to air (refractive index of glass=1.5). The angle of incidence is 50°. The deviation of the ray is
 - a) 0°

b) 80

c) $50^{\circ} - \sin^{-1} \left[\frac{\sin 50^{\circ}}{1.5} \right]$

- d) $\sin^{-1} \left[\frac{\sin 50^{\circ}}{1.5} \right] 50^{\circ}$
- 668. Relation between critical angles of water and glass is
 - a) $C_{\omega} > C_g$
- b) $C_{\omega} < C_{a}$
- c) $C_{\omega} = C_g$
- d) $C_{\omega} = C_{g} = 0$

- 669. Dispersive power depends on the following
 - a) Material of the prism

b) Shape of the prism

c) Size of the prism

- d) Size, shape and material of the prism
- 670. The focal length of a concave mirror is f and the distance from the object to the principle focus is x. The ratio of the size of the image to the size of the object is
 - a) $\frac{f+x}{f}$
- b) $\frac{f}{x}$

- c) $\sqrt{\frac{f}{x}}$
- d) $\frac{f^2}{x^2}$

- 671. What cause chromatic aberration?
 - a) Non-paraxial rays
 - b) Paraxial rays
 - c) Variation of focal length with colour
 - d) Difference in radii of curvature of the bounding surface of the lens
- 672. While light is incident on the interface of glass and air as shown in the figure. If green light is just totally internally reflected then the emerging ray in air contains

a) Yellow, orange, red

b) Violet,indigo,blue

c) All colours

- d) All colours except green
- 673. The distance between an object and the screen is 100 cm. A lens produces an image on the screen when placed at either of the position 40 cm apart. The power of the lens is
 - a) \approx 3 dioptres
- b) ≈ 5 dioptres
- c) ≈ 7 dioptres
- d) ≈ 9 dioptres
- 674. A fish, looking up through the water sees the outside world contained in a circular horizon. If the refractive index of water is 4/3 and the fish is 12 cm below the surface of water, the radius of the circle in centimetre is
 - a) $\frac{12 \times 3}{\sqrt{5}}$
- b) $12 \times 3 \times \sqrt{5}$
- c) $\frac{12 \times 3}{\sqrt{7}}$
- d) $12 \times 3 \times \sqrt{7}$
- 675. Diameter of a plano-convex lens is 6 cm and thickness at the centre is 3 mm. If the speed of light in the material of the lens is $2 \times 10^8 m/s$, the focal length of the lens is

P ₁ P ₃			
a) $\frac{3\sqrt{3}}{8}I_0$	b) $\frac{I_0}{8}$	c) $\frac{3}{8}I_0$	d) $\frac{\sqrt{3}}{8}I_0$
	5) (8)	ned on a screen 1.0 m away	from it. This can be achieved by
approximately place	cing r of suitable focal length	h) A concave mirror	of suitable focal length
	focal length less than 0.25		suitable focal length
그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	[2011년 12 12 12 12 12 12 12 12 12 12 12 12 12	사용하다 그 그 그 그 사람들이 하나 하는데 하다 하는데 하다 하는데 하다 하나	e. The refractive index of water
			At an instant, when the ball is
3	vater surface, the fish sees		,
a) 9 ms ⁻¹	b) 12 ms ⁻¹	c) 16 ms ⁻¹	d) 21.33 ms^{-1}
	사람들이 있는데 이번 사람들이다.		the other half with a liquid of
7			epth of the inner surface of the
		of the bottom of the vessel)	
n	$d(n+\sqrt{2})$	$\sqrt{2}n$	nd
a) $d(n+\sqrt{2})$	b) $\frac{\sqrt{2}}{n\sqrt{2}}$	c) $\frac{\sqrt{2}n}{d(n+\sqrt{2})}$	$(d+\sqrt{2n})$
			gth $2m$. The flux through one side
is			
a) 500 lumen	b) 600 <i>lumen</i>	c) 750 lumen	d) 1500 <i>lumen</i>
	ollowing statements is true		
		a concave lens will have its i	mage formed at infinity
	can give diminished virtua	i image or can produce a parallel be	am of light
	ge formed in a plane mirror		am or light
107	No		the figure. A light ray is incident
	Harry grand for the firm and the child and the same grant and the same of		e coincides with the plane of the
			iding the first one) before it
emerges out is			
. 4 × 2√3m × 2√	→		
<u> </u>	//////////////////////////////////////		
0.2 <i>m</i>	300		
• 7000000000000000000000000000000000000	unul A		
a) 28	b) 30	c) 32	d) 34
	n is observed with a prism	having angle of prism A, ang	
	gle of emergence e. We the		
a) $i > e$	b) $i < e$	c) $i = e$	d) $i = e = \delta$
		ength 4200 Å in air travels i	in water of refractive index 4/3.
Its wavelength in v			
a) 4200 Å	b) 5800 Å	c) 4150 Å	d) 3150 Å
			igths f_2 and their combined focal
length was F. The	combination of these lenses	s will behave like a concave	iens, II

c) 30 cm

676. A light source is located at P_1 as shown in the figure. All sides of the polygon are equal. The intensity of

d) 10 cm

a) 15 cm

b) 20 cm

illumination at P_2 is I_0 . What will be the intensity of illumination at P_3

-1	£	-	r
aj	11	>	10

b)
$$f_1 < f_2$$

c)
$$f_1 = f_2$$

d)
$$f_1 \le f_2$$

a) $f_1 > f_2$ b) $f_1 < f_2$ c) $f_1 = f_2$ d) $f_1 \le f_2$ 686. A ray of light is incident on a surface of glass slab at an angle 45°. If the lateral shift produced per unit thickness is $\frac{1}{\sqrt{2}}$ m, the angle of refraction produced is

a)
$$\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

b)
$$\tan^{-1} \left(1 - \sqrt{\frac{2}{3}} \right)$$

c)
$$\sin^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$$

b)
$$\tan^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$$
 c) $\sin^{-1}\left(1-\sqrt{\frac{2}{3}}\right)$ d) $\tan^{-1}\left(\sqrt{\frac{2}{\sqrt{3}-1}}\right)$

- 687. Which one of the following is not associated with total internal reflection
 - a) The mirage formation

b) Optical fiber communication

c) The glittering of diamond

- d) Dispersion of light
- 688. The radius of curvature of concave mirror is 24 cm and the image is magnified by 1.5 times. The object distance is
 - a) 20 cm
- b) 8 cm
- c) 16 cm
- d) 24 cm
- 689. A telescope consists of two thin lenses of focal lengths 0.3 m and 3 cm respectively. It is focused on moon which subtends on angle of 0.5° at the objective. Then, the angle subtended at the eye by the final image will be
 - a) 5°

- b) 0.25°
- c) 0.5°

- 690. Magnifying power of a simple microscope is (when final image is formed at D = 25 cm from eye)

a)
$$\frac{D}{f}$$

- 691. A magnifying glass is to be used at the fixed object distance of 1 inch. If it is to produce an erect image magnified 5 times its focal length should be
 - a) 0.2 inch
- b) 0.8 inch
- c) 1.25 inch
- d) 5 inch
- 692. The maximum illumination on a screen at a distance of 2 m from a lamp is 25 lux. The value of total luminous flux emitted by the lamp is
 - a) 1256 lumen
- b) 1600 lumen
- c) 100 candela
- d) 400 lumen

- 693. Retina of eye acts like of camera
 - a) Shutter
- b) Film
- c) Lens
- d) None of these

- 694. The field of view is maximum for
 - a) Plane mirror
- b) Concave mirror
- c) Convex mirror
- d) Cylindrical mirror
- 695. A person can see objects clearly only upto a maximum distance of 50 cm. His eye defect, nature of the corrective lens and its focal length are respectively
 - a) Myopia, concave, 50 cm

- b) Myopia, convex, 50 cm
- c) Hypermetropia, concave, 50 cm
- d) Catract, convex, 50 cm
- 696. When white light passes through the achromatic combination of prisms, then what is observed
 - a) Only deviation

b) Only dispersion

c) Deviation and dispersion

- d) None of the above
- 697. A ray of light incident normally on an isosceles right angled prism travels as shown in the figure. The least value of the refractive index of the prism must be

a) $\sqrt{2}$

b) $\sqrt{3}$

c) 1.5

- 698. A thin double convex lens has radii of curvature each of magnitude 40 cm and is made of glass with $\mu =$ 1.65. The focal length of the lens in nearly
 - a) 30 cm
- b) 31 cm
- c) 40 cm
- d) 41 cm

699. A	transparent cube of 2.1	m edge contains a small air	r bubble. Its apparent dista	nce when viewed through
0	one face of the cube is 0.10 m and when viewed from the opposite face is 0.04 m. The actual distance of the			
b	ubble from the second fa	ace of the cube is		
a) 0.06 m	b) 0.17 m	c) 0.05 m	d) 0.04 m
700. A	16 cm long image of an	object is formed by a conve	ex lens on a screen. On mov	ring the lens towards the
S	creen, without changing	the positions of the object	and the screen, a 9 cm long	image is formed again on
tł	he screen. The size of the	object is		
a) 9 cm	b) 11 cm	c) 12 cm	d) 13 cm
701. A	n astronomical telescope	e has an angular magnificat	tion of magnitude 5 for dist	tant objects. The separation
b	etween the objective and	d the eye-piece is 36 cm and	d the final image is formed	at infinity. The focal length
f_0	of the objective and the	focal length f_e of the eye-p	piece are	
a	$f_0 = 45 \text{ cm and } f_e = -6$	9 cm	b) $f_0 = -7.2 \text{ cm} \text{ and } f_e =$	5 cm
c]	$f_0 = 50 \text{ cm and } f_e = 10$) cm	d) $f_0 = 30$ cm and $f_e = 6$	cm
702. A	lens (focal length 50 cm) forms the image of a dist	ant object which subtends	an angle of 1 milliradian at
	he lens. What is the size of	-	,	
) 5 mm	b) 1 mm	c) 0.5 mm	d) 0.1 mm
		d by atmospheric atoms an		
	나 하나 하는 것들이 하나 하는 것이 하셨다면 하는 것이 없는 것이 없다면 하는 것이 없다면 없다.	The amount of scattering fo		
	[19] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	and reference that the area and the reference of the state of the stat	. De la contrata de la compositiva de la contrata de la compositiva de la compositiva de la compositiva de la c	
a _.	$(\frac{4}{9}A)$	b) 2.25 A	c) 1.5 A	d) $\frac{A}{5}$
704. F	ocal length of a convergi	ng lens in air is R. If it is di	pped in water of refractive	index 1.33, then its focal
le	ength will be around (Re	fractive index of lens mater	rial is 1.5)	
a) R	b) 2R	c) 4R	d) R/2
705. T	he size of the image of ar	n object, which is at infinity	, as formed by a convex ler	ns of focal length 30 cm is 2
CI	m. If a concave lens of fo	cal length 20 cm is placed b	etween the convex lens an	d the image at a distance of
2	6 cm from the convex lea	ns, calculate the new size o	f the image	
a) 1.25 cm	b) 2.5 cm	c) 1.05 cm	d) 2 cm
706. A	stigmatism (for a humar	n eye) can be removed by u	sing	
a) Concave lens	b) Convex lens	c) Cylindrical lens	d) Prismatic lens
707. W	Vhen light emitted by a w	white hot solid is passed thr	rough a sodium flame, the s	spectrum of the emergent
li	ght will show			
a) The D_1 and D_2 bright ye	ellow lines of sodium		
b) Two dark lines in the y	ellow region		
c]) All colours from violet	to red		
) No colours at all			
708. V	elocity of light in a medi	um is $1.5 \times 10^8 m/s$. Its ref	ractive index will be	
The Control of the Co) 8	b) 6	c) 4	d) 2
		convex lens is 20 cm. When		
0	f it to 50cm, the magnific	cation of its image changes	from m_{25} to m_{50} .The ratior	$1 \frac{m_{25}}{m_{50}}$ is
) 6	b) 7	c) 8	d) 9
5.17		es of glass and water are $\frac{3}{2}$ a		
		3 of glass and water are 2	and 3. The radio of velocity of	of figure in glass and water
	rill be	1) 0 7	3.0.0	1) 0 4
) 4 : 3	b) 8 : 7	c) 8:9	d) 3 : 4
	WWW.	ve index when a light ray go	bes from medium t to medi	um <i>J</i> , then the product
2	$\mu_1 \times {}_3\mu_2 \times {}_4\mu_3$ is equal	to	4	
a) ₃ μ ₁	b) ₃ μ ₂	c) $\frac{1}{1\mu_4}$	d) ₄ μ ₂
0.20	ner varioussio	PROCESSES AND STATE OF THE STAT	$_1\mu_4$	KOS HOLDROS BOLITOR

712. A parallel beam of white light falls on	a convey lens. Im	gages of blue, vellow and r	ed light are formed on
other side of the lens at a distance of		. 1977	
the material of the lens will be	7.20 m, 0.205 m a	ma 0.214 m respectively.	The dispersive power of
a) 619/1000 b) 9/200	c.) 14/205	d) 5/214
713. Two point sources A and B of luminos			· · · · · · · · · · · · · · · · · · ·
grease spot screen is placed between		0.70	
from both the sides, it should be place		ror the grease spot to bee	ome muistinguishable
a) 80 cm from 16 cd lamp and 20 cm) 20 cm from the 16 cd an	nd 80 cm from 1 cd
이 경투에 가는 기를 받는 이 아이지 때 마이트에 하는 이 나이나 아이는 아이를 하는 것 같아. 그는 나이 그는 나이가 모든 사이			
c) $\frac{400}{3}$ cm from 16 cd and $\frac{100}{3}$ cm from		$\left(\frac{100}{3}\right)$ cm from 16 cd and $\frac{4}{3}$	
714. A photograph of the moon was taken		ater on, it was found that	a housefly was sitting on
the objective lens of the telescope. In	8 670 97		
 a) The image of housefly will be reduced 			
b) There is a reduction in the intensity			
c) There is an increase in the intensity			
d) The image of the housefly will be e			
715. Consider the following two statement		entify the correct choice in	the given answers
A: Line spectra is due to atoms in gase	eous state		
B: Band spectra is due to molecules			
a) Both A and B are false) A is true and B is false	
c) A is false and B is true		l) Both A and B are true	
716. The intensity of direct sunlight on a su		50	intensity of direct sunlight
on a surface, whose normal makes an	angle of 60° with	the rays of the sun	
a) I_0 b) $I_0(\frac{\sqrt{3}}{3})$	c)	I_0	d) 2 <i>I</i> ₀
$a_1 I_0$ $b_1 I_0 \left(\frac{1}{2} \right)$	C,	7 2	u) 21 ₀
717. We wish to see inside an atom. Assum	ing the atom to h	ave a diameter of 100 pm	, this means that one must
be able to resolved a width of say 10 p	om. If an electron	microscope is used, the n	ninimum electron energy
required is about			
a) 1.5 keV b) 15 keV	c)) 150 <i>keV</i>	d) 1.5 <i>keV</i>
718. A plano-convex lens of refractive inde	x 1.5 and radius o	of curvature 30 cm is silve	ered at the curved surface.
Now, this lens has been used to from	the image of an ol	bject. At what distance fro	m this lens, an object be
placed in order to have a real image o	f the size of the ol	bject?	
a) 20 cm b) 30 cm			d) 80 cm
719. Two media having speeds of light 2 \times	10 ⁸ ms ⁻¹ and 2.4	\times 10 8 ms $^{-1}$, are separated	d by a plane surface. What
is the angle for a ray going from medi	um I to medium I	I?	
a) $\sin^{-1}\left(\frac{5}{6}\right)$ b) $\sin^{-1}\left(\frac{5}{1}\right)$	5)	$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$	d) $\sin^{-1}\left(\frac{1}{2}\right)$
$(\frac{7}{6})$	$\overline{2}$)	$\sqrt{2}$	$(\frac{1}{2})$
720. A ray of light passes through an equila	ateral prism such	that the angle of incidence	e and the angle of
emergence are both equal to 3/4th of	the angle of prism	m. The angle of minimum	deviation is
a) 15° b) 30°	c)) 45°	d) 60°
721. A beam of light consisting of red, gree	n and blue colour	rs is incident on a right-an	gled prism ABC.The
refractive indices of the material of th	e prism for the ab	bove red, green and blue v	wavelengths are 1.39, 1.44
and 1.47 respectively. The colour/col-	ours transmitted	through the face AC of the	e prism will be

- a) Red only
- b) Red and green
- c) All the three
- d) None of these

- 722. A lens of focal power 0.5 D is
 - a) A convex lens of focal length 0.5 m
- b) A concave lens of focal length 0.5 m
- c) A convex lens of focal length 2 m
- d) A concave lens of focal length 2 m
- 723. A ray of light is incident at 50° on the middle of one of the two mirrors arranged at an angle of 60° between them. The ray then touches the second mirror, gets reflected back to the first mirror, making an angle of incidence
 - a) 50°

b) 60°

c) 70°

- d) 80°
- 724. In a given direction, the intensities of the scattered light by a scattering substance for two beams of light are in the ratio of 256:81. The ratio of the frequency of the first beam to the frequency of the second beam is
 - a) 64:127
- b) 4:3
- c) 64:27
- 725. A object is placed at a distance of f/2 from a convex lens of focal length f. The image will be
 - a) At one of the foci, virtual and double its size
- b) Is greater than 1.5 but less than 2.0

c) At 2f, virtual and erect

- d) None of the above
- 726. The dispersive power of the material of lens of focal length 20 cm is 0.08. The longitudinal chromatic aberration of the lens is
 - a) 0.08 cm
- b) 0.08/20 cm
- c) 1.6 cm
- d) 0.16 cm
- 727. Maximum lateral displacement of a ray of light incident on a slab of thickness t is

- 728. A medium shows relation between i and r as shown. If speed of light in the medium is nc then value of n is

a) 1.5

b) 2

d) $3^{-1/2}$

- 729. Ray optics is valid, when characteristic dimensions are
 - a) Of the same order as the wavelength of light
 - b) Much smaller than the wavelength of light
 - c) Of the order of one millimeter
 - d) Much larger than the wavelength of light
- 730. A thin rod of length f/3 lies along the axis of a concave mirror of focal length f. One end of its magnified image touches an end of the rod. The length of the image is

b) $\frac{1}{2}f$

c) 2f

- 731. As shown in figure position of an images I of an object O formed by lens. This is possible if

- a) A convex lens is placed to the left of O
- b) A concave lens is placed to the left of O

732. A man has a concave shaving mirror of focal length 0.2 m. How far should the mirror be held from his face in order to give an image of two fold magnification? b) 0.2 m c) 0.3 m 733. In a thin prism of glass (refractive index 1.5), which of the following relations between the angle of minimum deviations δ_m and angle of refraction r will be correct

b) $\delta_m = 1.5r$

d) $\delta_m = \frac{r}{2}$ 734. A substance is behaving as convex lens in air and concave in water, then its refractive index is

a) Smaller than air

a) $\delta_m = r$

b) Greater than both air and water

d) A concave lens is placed to the right of I

c) Greater than air but less than water

d) Almost equal to water

735. A man's near point is 0.5 m and far point is 3 m. Power spectacle lenses repaired for

(i) reading purposes

(ii) seeing distant objects, respectively

c) A convex lens is placed between O and I

a) -2 D and +3 D

b) +2 D and -3 D

c) $\delta_m = 2r$

c) +2 D and - 0.33 D

d) -2 D and + 0.33D

736. An astronaut in a spaceship see the outer space as

a) White

b) Black

c) Blue

d) Red

d) 0.4 m

737. When a lens of refractive index n_1 is placed in a liquid of refractive index n_2 , the lens looks to be disappeared only, if

a) $n_1 = n_2/2$

b) $n_1 = 3n_2/4$

c) $n_1 = n_2$

d) $n_1 = 5n_2/4$

738. A triangular prism of glass is shown in the figure. A ray incident normally to one face is totally reflected, if $\theta = 5^{\circ}$. The index of refraction of glass is

a) Less than 1.41

b) Equal to 1.41

c) Greater than 1.41

d) None of the above

739. In a thin spherical fish bowl of radius 10 cm filled with water of refractive index 4/3 there is a small fish at a distance of 4 cm from the centre C as shown in figure. Where will the image of fish appear, if seen from E

a) 5.2 cm

b) 7.2 cm

c) 4.2 cm

d) 3.2 cm

740. An achromatic combination of lenses is formed by joining

a) 2 convex lenses

b) 2 concave lenses

c) 1 convex lens and 1 concave lens

d) Convex lens and plane mirror

741. The wavelength of light in air and some other medium are respectively λ_a and λ_m . The refractive index of medium is

a) λ_a/λ_m

b) λ_m/λ_a

c) $\lambda_a \times \lambda_m$

d) None of these

742. If an object is placed 10 cm infront of a concave mirror of focal length 20 cm, the image will be

a) Diminished, upright, virtual

b) Enlarged, upright, virtual

c) Diminished, inverted, real

d) Enlarged, upright, real

743. If the wavelength of light in vacuum be λ , the wavelength in a medium of refractive index n will be

a) nh

c) $\frac{\lambda}{n^2}$

744. An observer can see through a pin-hole the top end of a thin rod of height h, placed as shown in the figure. The beaker height is 3h and its radius h. When the beaker is filled with a liquid up to a height 2h, he can see the lower end of the rod. Then the refractive index of the liquid is

a) 5/2

b) $\sqrt{(5/2)}$

c) $\sqrt{(3/2)}$

d) 3/2

745. Light rays from a source are incident on a glass prism of index of refraction μ and angle of prism a. At near normal incidence, the angle of deviation of the emerging rays is

a) $(\mu - 2)\alpha$

b) $(\mu - 1)\alpha$

d) $(\mu + 2)\alpha$

746. A concave mirror is placed on a horizontal table with its axis directed vertically upwards. Let O be the pole of the mirror and C its centre of curvature. A point object is placed at C. It has a real image, also located at C. If the mirror is now filled with water, the image will be

a) Real and will remain at C

b) Real, and located at a point between C and ∞

c) Virtual and located at a point between C and O

d) Real, and located at a point between C and O

747. For which of the following colour, the magnifying power of a microscope will be maximum

a) White colour

b) Red colour

c) Violet colour

d) Yellow colour

748. An opera glass (Gallilean telescope) measures 9 cm from the objective to the eyepiece. The focal length of the objective is 15 cm. Its magnifying power is

a) 2.5

b) 2/5

c) 5/3

d) 0.4

749. If \hat{i} denotes a unit vector along incident light ray, \hat{r} a unit vector along refracted ray into a medium of refractive index μ and \hat{n} unit vector normal to boundary of medium directed towards incident medium, then law of refraction is

a) $\hat{\imath}$. $\hat{n} = \mu(\hat{r}.\hat{n})$

b) $\hat{\imath} \times \hat{n} = \mu(\hat{n} \times \hat{r})$

c) $\hat{\imath} \times \hat{n} = \mu(\hat{r} \times \hat{n})$

d) $\mu(\hat{\imath} \times \hat{n}) = \hat{r} \times \hat{n}$

750. An object is placed 12 cm to the left of a converging lens of focal length 8 cm. Another converging of 6 cm focal length is placed at a distance of 30 cm to the right of the first lens. The second lens will produce

a) No image

b) A virtual enlarged image

c) A real enlarged image

d) A real smaller image

751. As the position of an object (u) reflected from a concave mirror is varied, the position of the image (v) also varies. By letting the u changes from 0 to $+\infty$ the graph between v versus u will be

752. A ray of light is incident on a plane mirror at an angle of 60°. The angle of deviation produced by the mirror is

a) 120°

b) 30°

c) 60°

753. A combination of two thin lenses of the same material with focal length f_1 and f_2 , arranged on a common axis minimizes chromatic aberration. If the distance between them is

a) $\frac{(f_1 + f_2)}{4}$

b) $\frac{(f_1+f_2)}{2}$

c) $(f_1 + f_2)$

d) $2(f_1 + f_2)$

754.	A boat has green light of v	wavelength $\lambda = 500 \text{ n}$	m on the mast. Wh	nat wavelength would b	e measured and
	what colour would be obs	served for this light as s	seen by a diver sul	omerged in water by th	e side of the
	boat?				
	Given, $n_w = \frac{4}{3}$.				
	a) Green of wavelength 3	76 nm	b) Red of wa	velength 665 nm	
	c) Green of wavelength 5		870	avelength 376 nm	
755	그래, 그 사람이 되었다.				(22 Ib
/33.	A leaf which contains only	y green pigments, is mu	illilliated by a lase	r light of wavelength o	.632 μm. It would
	appear to be	L) Dl. d.	-) p-1	1) (
== <	a) Brown	b) Black	c) Red	d) Green	
/56.	For a convex lens, if real i		31	53	WS
	a) u+v 1	b) u+v ↑ 1	C) u+v ↑	d) <i>u+v</i> ↑	1
				100	
	4f	4f	`	4f	
					1
	2f u or v	2f u or v		u or v	2f u or v
757	A thin prism of angle 15°	made of glass of refract	tive index $\mu_{\rm c} = 1$	5 is combined with ano	ther prism of
/3/.	glass of refractive index μ				
	The angle of the second p		don of the prisins	produces dispersion w	itilout deviation.
		b) 5°	.) 79	J) 100	
750	a) 12°	,	c) 7°	d) 10°	110
/58.	Two vertical plane mirror				(T)
	horizontally is reflected fi				ation is
	a) 60°	b) 120°	c) 180°	d) 240°	
759.	A point object is placed at	t a distance of 30 cm fro	om a convex mirro	or of a focal length 30 ci	n. The image will
	form at				
	a) Infinity		b) Pole		
	c) 15 cm behind the mirr	or	d) No image	will be formed	
760.	When a ray of light enters	s a glass slab from air			
	a) Its wavelength decreases				
	b) Its wavelength increases				
	c) Its frequency increase	S			
	d) Neither its wavelength		iges		
761.	If eye is kept at a depth h	15 0.23	NEO	ved outside, then the di	ameter of the
	circle through which the				
				h	
	a) $\frac{h}{\sqrt{u^2-1}}$	b) $\frac{h}{\sqrt{u^2+1}}$	c) $\frac{1}{\sqrt{u^2-1}}$	d) $\frac{h}{\sqrt{\mu^2}}$	
760	V P	V P	V P -	VF	- Trl 1'
762.	The distance between an	anno filandina matika kana arawa 🕳 ana ara	iens is <i>m</i> times th	e rocai length of the len	s. The linear
	magnification produced b	y the lens is			
	a) m	b) 1/m	c) $m + 1$	d) $\frac{1}{m+1}$	
760	TOTAL STATE AND ADDRESS AND AD			711 1	
/63.	Four lenses of focal lengtl				
	astronomical telescope. T	- a - 1750	100	250	
	a) +15 cm	b) +20 <i>cm</i>	c) +150 cm	· · · · · · · · · · · · · · · · · · ·	
764.	A convex lens, a glass slab	o, a glass prism and a so	olid sphere all are	made of the same glass	, the dispersive
	power will be				
	a) In the glass slab and pr	rism	b) In the len	s and solid sphere	
	c) Only in prism		d) In all the	four	
765.	Which of the following sp	ectrum have all the fre	quencies from hig	h to low frequency ran	ge
	a) Band spectrum		b) Continuo		457
	c) Line spectrum		27.0	uous spectrum	

- 766. A car is fitted with a convex side view mirror of focal length 20 cm. A second car 2.8 m behind the first car is overtaking the first car is a relative speed of 15 m/s. The speed of the image of the second car as seen in the mirror of the first one is
 - a) $\frac{1}{15}$ m/s
- b) 10 m/s
- c) 15 m/s
- d) $\frac{1}{10}$ m/s
- 767. A ray of light is incident on an equilateral glass prism placed on a horizontal table. For minimum deviation which of the following is true?

a) PQ is horizontal

b) QR is horizontal

c) RS is horizontal

- d) Either PQ or RS is horizontal
- 768. A beam of light is travelling from region II to region III (see the figure). The refractive index in region I, II and III are n_0 , $\frac{n_0}{\sqrt{2}}$, and $\frac{n_0}{2}$ respectively. The angle of incidence θ for which the beam just misses entering region III is

Region I	Region II	Region III
θ		
n_0	$n_0/\sqrt{2}$	n ₀ /2

a) 30°

- b) 45°
- c) 60°

- d) $\sin^{-1}(\sqrt{2})$
- 769. The refractive indices of the crown glass for blue and red light are 1.51 and 1.49 respectively and those of the flint glass area 1.77 and 1.73 respectively. An isosceles prism of angle 6° is made of crown glass. A beam of white light is incident at a small angle on this prism. The other flint glass isosceles prism is combined with the crown glass prism such that there is no deviation of the incident light
 - (i)Determine the angle of the flint glass prism
 - (ii)Calculate the net dispersion of the combined system
 - a) -4° , 0.04° ,
- b) 4°, 0.04
- c) 5°, 0.04
- d) $-5,0.04^{\circ}$
- 770. A light beam is travelling from Region I to Region IV (refer figure). The refractive index in Region I, II, III and IV are $n_0, \frac{n_0}{2}, \frac{n_0}{6}$ and $\frac{n_0}{8}$, respectively. The angle of incidence θ for which the beam just misses entering Region IV is

- a) $\sin^{-1}\left(\frac{3}{4}\right)$
- b) $\sin^{-1}\left(\frac{1}{8}\right)$
- c) $\sin^{-1}\left(\frac{1}{4}\right)$
- d) $\sin^{-1}\left(\frac{1}{2}\right)$
- 771. An isosceles prism of angle 120° has a refractive index of 1.44. Two parallel monochromatic rays enter the prism parallel to each other in air as shown. The rays emerging from the opposite faces

a) Are parallel to each other	b) Are diverging
c) Make an angle $2 \sin^{-1}(0.72)$ with each o	Make an angle $2(\sin^{-1}(0.72) - 30^{\circ})$ with each
772. A person suffering from 'presbyopia' (myo	pia and hyper metropia both defects) should use
a) A concave lens	
b) A convex lens	
 c) A bifocal lens whose lower portion is con 	
d) A bifocal lens whose upper portion is co	
	Its image is made by convex lens of 50 cm focal length. The
diameter of the image will be	
a) 5 mm b) 4.36 mm	c) 7 mm d) None of these
5-17 (F)	at a distance of 0.75 m puts on spectacles of power 2.5 D. The
near point now is at	
a) 0.75 m b) 0.83 m	c) 0.26 cm d) 0.26 m
775. Focal length of a plane mirror is	
a) Zero b) Infinite	c) Very less d) Indefinite
(T)	lvered. A ray of light incident at an angle of 45° at the face AB
retraces its path after refraction at face AB the prism is	and reflection at face AC . The refractive index of the material of
45°C Silvered	
a) 1.5 b) $3/\sqrt{2}$	c) $\sqrt{2}$ d) 4/3
	g on a screen. When the lens is shifted to a new position without nage on the screen which is 16 cm tall. The length of the object c) 12 cm d) 20 cm
	spectrum and a line absorption spectrum are simultaneously
obtained	speed and a fine absorption speed and are simultaneously
a) Bunsen burner flame	b) The sun
c) Tube light	d) Hot filament of an electric bulb
10 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -	to lenses, The radii of curvature of all the curved surfaces are
same. The ratio of the equivalent focal leng	

c) 2:1:1 780. A light ray is incident perpendicular to one face of a 90° prism and is totally internally reflected at the glass-air interface. If the angle of reflection is 45° , we conclude that the refractive index n

(Q)

(R)

b) 1:1:-1

(P)

a) 1:1:1

- b) $n > \sqrt{2}$
- c) $n > \frac{1}{\sqrt{2}}$
- d) $n < \sqrt{2}$
- 781. What should be the angle between two plane mirrors so that whatever be the angle of incidence, the incident ray and the reflected ray from the two mirrors be parallel to each other
 - a) 60°

b) 90°

- c) 120°
- d) 175°
- 782. A convex lens has a focal length f. If is cut into two parts along the dotted line as shown in the figure. The focal length of each part will be

b) f

c) $\frac{3}{2}f$

d) 2f

- 783. The chromatic aberration in lenses becomes due to
 - a) Disimilarity of main axis of rays
 - b) Disimilarity of radii of curvature
 - c) Variation of focal length of lenses with wavelength
 - d) None of these
- 784. A simple telescope, consisting of an objective of focal length 60 cm and a single eye lens of focal length 5 cm is focussed on a distant object is such a way that parallel rays come out from the eye lens. If the object subtends an angle 2° at the objective, the angular width of the image
 - a) 10°

b) 24°

c) 50°

- d) 1/6°
- 785. An electric bulb illuminates a plane surface. The intensity of illumination on the surface at a point 2 m away from the bulb 5×10^{-4} phot (lumen cm⁻²). The line joining the bulb to the point makes an angle of 60° with the normal to the surface. The intensity of the bulb in candela (candle power) is
 - a) 40×10^{-4}
- b) 40

- c) $40\sqrt{3}$
- 786. Magnification at least distance of distinct vision of a simple microscope having its focal length 5 cm is c) 5

- 787. Two lenses of power 15D and +5 D are in contact with each other. The focal length of the combination is
- a) -20 cm b) -10 cm d) + 10 cmc) +20 cm788. In an experiment to find the focal length of a concave mirror a graph is drawn between the magnitudes of u and v. The graph looks like

- 789. A person is in a room whose ceiling and two adjacent walls are mirrors. How many images are formed

b) 6

c) 7

- 790. All of the following statements are correct except
 - a) The total length of an astronomical telescope is the sum of the focal lengths of its two lenses

	b) The image formed by tl	ne astronomical telescope	is always erect because the	effect of the combination
	of the two lenses is dive	1270	,	
			n be increased by decreasi	ng the focal length of the
	eye-piece		· · · · · · · · · · · · · · · · · · ·	
		of the refracting type of as	tronomical telescope is the	ratio of the focal length of
	the objective to that of		cronomical telescope is the	radio of the local length of
791			screen. If the linear magnif	ication is 4, the area of
	magnified film on the scre	얼마하는 아이지 아이트 이 사는 이렇게 되었다면 되었다면 모든 아이에 어어나 없다.	screen. If the inteat magnin	ication is 4, the area of
	a) $1600 \ cm^2$	b) 400 cm ²	a) 000 am²	d) $200 cm^2$
	AND THE RESERVE OF THE PROPERTY OF THE PROPERT	the second secon	which the refractive index	
	the following will change	ne medium to the other of	which the remactive much	is different, then which of
	(177)	and valagity	h) Fraguenay and wavele	nath
	a) Frequency, wavelength		b) Frequency and wavele	
	c) Frequency and velocity		d) Wavelength and veloci	ty
		sun looks more red than at		
	a) The sun is hottest at the		b) Of the scattering of ligh	
	c) Of the effect of refraction		d) Of the effect of diffracti	
			ces of a prism of angle 5°. If	
			ly, the angular separation b	etween these two colours
	when they emerge out of	경기 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0.0.20	792 3072 0
	a) 0.9°	b) 0.09°	c) 1.8°	d) 1.2°
		10.50	(2)	ectively 2 m and 5 cm. Final
			n (2) infinity. Magnifying p	
	a) –48, –40	b) -40,48	c) -40,+48	d) $-48 + 40$
	일반하면 100 100 100 100 100 100 100 100 100 10			length 20 cm. On the other
			vex mirror of radius of curv	ature 10 cm be placed in
	order to have an upright i	mage of the object coincide	ent with it	
	a) 12 <i>cm</i>	b) 30 <i>cm</i>	c) 50 cm	d) 60 <i>cm</i>
797.	Optical fibres are related v	with		
	a) Communication	b) Light	c) Computer	d) None of these
798.	When light enters water f	rom the vacuum, then the v	wavelength of light	
	a) Decreases	b) Increases	c) Remain constant	d) Becomes zero
799.	Light travels with a speed	of 2 $\times10^8 ms^{-1}$ in crown	glass of refractive index 1.5	5. Whatis the speed of light
	in dense flint glass of refra	active index 1.8?		
	a) $1.33 \times 10^8 \text{ms}^{-1}$	b) $1.67 \times 10^8 \mathrm{ms^{-1}}$	c) $2.0 \times 10^8 \text{ms}^{-1}$	d) $3.0 \times 10^8 \mathrm{ms^{-1}}$
800.	Which one of the followin	g spherical lenses does not	exhibit dispersion? The ra	dii of curvature of the
	surfaces of the lenses are	as given in the diagrams	en deze en la desengant emplante meta Amerika. El Tene, en la el trom ma vice en entre al emplante en en en de	
	a) /	b)	c) /	d) \
	R_1 R_2	R o	$R \left(\begin{array}{c} R \end{array} \right)$	R) ∞
TO TO WELL PROPERTY AND	$R_1 \neq R_2$	1000 S2 77W) F4 5590	0 2 100 0 100 0	w va sa s
	re til fra til frægger mann sammen at men en men en men en men samme en men.	rpendicular to each other.	A ray after suffering reflect	ion from the two mirrors
	will be			
	 a) Perpendicular to the or 		b) Parallel to the original	
	c) Parallel to the first mir		d) At 45° to the original ra	
			: 30 cm and 50 cm respecti	vely produce shadows of
	equal intensities. Their ca	ndle powers are in the rati		_
	a) 9 25	b) $\frac{16}{25}$	c) $\frac{3}{5}$	d) $\frac{5}{3}$
		1779.793	~	9
803.	A diver at a depth of 12m	in water $(u - \frac{4}{3})$ sees the s	ky in a cone of semivertical	angle

a)	sin ⁻¹	(4\)
٠,		13/

b)
$$\tan^{-1}\left(\frac{4}{3}\right)$$
 c) $\sin^{-1}\left(\frac{3}{4}\right)$

c)
$$\sin^{-1}\left(\frac{3}{4}\right)$$

804. A point object O is kept at a distance of OP = u. The radius of curvature of the spherical surface APB is CP = R. The refractive index of the media are n_1 and n_2 which are as shown in diagram. Then,

- (1) If $n_1 > n_2$, image is virtual for all values of u
- (2) If $n_2 = 2n_1$, image is virtual when R > u
- (3) The image is real for all values of u, n_1 and n_2 . Here, the correct statements is/are
- a) Only (2)
- b) Both (1) and (2)
- c) Only (1)
- d) (1), (2) and (3)
- 805. When sunlight is scattered by minute particles of atmosphere, the intensity of light scattered away is proportional to
 - c) (wavelength of light)² d) (frequency of light)² a) (wavelength of light)⁴ b) (frequency of light)⁴
- 806. A ray of light from a denser medium strikes a rarer medium at angle of incidence i. The reflected and refracted rays make an angle of 90° with each other. The angles of reflection and refraction are r and r'respectively. The critical angle is
 - a) $\sin^{-1}(\tan r')$
- b) $\sin^{-1}(\tan r)$
- c) $tan^{-1}(tan r')$
- d) $tan^{-1}(tan i)$
- 807. How many images are formed by the lens shown, if an object is kept on its axis?

a) 1

b) 2

c) 3

d) 4

- 808. Rainbow is formed due to
 - a) Total internal reflection

b) Scattering

c) Refraction

- d) Dispersion and total internal reflection
- 809. A concave mirror is placed at the bottom of an empty tank with face upwards and axis vertical. When sunlight falls normally on the mirror, it is focussed at distance of $32\ cm$ from the mirror. If the tank filled with water $\left(\mu = \frac{4}{3}\right)$ upto a height of 20 cm, then the sunlight will now get focussed at
 - a) 16 cm above water level

b) 9 cm above water level

c) 24 cm below water level

- d) 9 cm below water level
- 810. A person cannot see properly beyond 2 m. Power of the lens is
- b) 1.5 D
- c) -2.5 D
- d) -0.5 D
- 811. A telescope of diameter 2m uses light of wavelength 5000 Å for viewing stars. The minimum angular separation between two stars whose image is just resolved by this telescope is
 - a) $4 \times 10^{-4} \, rad$
- b) $0.25 \times 10^{-6} \, rad$
- c) $0.31 \times 10^{-6} \, rad$

b) Greater than critical angle

- d) $5.0 \times 10^{-3} \, rad$
- 812. The phenomena of total internal reflection is seen when angle of incidence is
 - a) 90°

- d) 0°
- c) Equal to critical angle
- 813. To increase both the resolving power and magnifying power of a telescope
 - a) Both the focal length and aperture of the objective has to be increased
 - b) To focal length of the objective has to be increased
 - c) The aperture of the objective has to be increased
 - d) The wavelength of light has to be decreased

814. When a plane mirror is placed horizontally on a level ground at a distance of 60m from the foot of a tower, the top of the tower and its image in the mirror subtend an angle of 90° at the eye. The height of the tower will be a) 30m b) 60m c) 90m d) 120m 815. Formula for dispersive power is (where symbols have their usual meanings) or If the refractive indices of crown glass for red, yellow and violet colours are respectively μ_r , μ_v and μ_v , then the dispersive power of this glass would be c) $\frac{\mu_r - \mu_v}{\mu_v - \mu_r}$ d) $\frac{\mu_v - \mu_r}{\mu_r} - 1$ 816. A diminished virtual image can be formed only in a) Plane mirror b) A concave mirror c) A convex mirror d) Concave-parabolic mirror 817. A converging lens is to project the image of a lamp 4 times the size of the lamp on a wall at a distance of 10 m from the lamp. The focal length of the lens is a) 1.6 m b) 2.67 m c) 4.4 m d) -1.6 m 818. An object has image thrice of its original size when kept at 8 cm and 16 cm from a convex lens. Focal length of the lens is a) 8 cm b) 16 cm c) Between 8 cm and 16 cm d) Less than 8 cm 819. A monochromatic light is passed through a prism......colours shows minimum deviation b) Violet d) Green c) Yellow 820. The refractive index of a piece of transparent quartz is the greatest for c) Green light a) Red light b) Violet light d) Yellow light 821. From a spherical mirror, the graph of 1/v versus 1/u is 822. A medium is said to be dispersive, if a) Light of different wavelengths propagate at different speeds b) Light of different wavelengths propagate at same speed but has different frequencies c) Light is gradually bent rather than sharply refracted at an interface between the medium and air d) Light is never totally internally reflected 823. The refractive index of a material of a planoconcave lens is 5/3, the radius of curvature is 0.3 m. The focal length of the lens in air is a) -0.45 m b) -0.6 m c) -0.75 m d) -1.0 m 824. The focal lengths of the objective and eye lenses of a telescope are respectively 200 cm and 5 cm. The minimum magnifying power of the telescope will be a) -40b) -48d) -100c) -60825. When monochromatic red right is used instead of blue light in a convex lens, its focal length will a) Does not depend on colour of light b) Increase c) Decrease d) Remain same 826. The nature of sun's spectrum is a) Continuous spectrum with absorption lines b) Line spectrum c) The spectrum of the helium atom d) Band spectrum 827. Dispersive power depends upon a) The shape of prism b) Material of prism c) Angle of prism d) Height of the prism 828. A lens of focal f projects m times magnified image of an object on a screen. The distance of the screen from the lens is

•	f		
aj	$\overline{(m-1)}$		

b)
$$\frac{f}{(m+1)}$$

c)
$$f(m-1)$$

d)
$$f(m+1)$$

- 829. A bucket contains some transparent liquid and its depth is 40 cm. On looking from above, the bottom appears to be raised up by 8 cm. The refractive index of the liquid is

b) 5

- 830. An object is placed at a distance of 10 cm from a concave mirror of radius of curvature 0.6 m. Which of the following statements is incorrect?
 - a) The image is formed at a distance for 15 cm from the mirror
 - b) The image formed is real
 - c) The image is 0.5 times the size of the object
 - d) The image is 1.5 times the size of the object
- 831. A lamp of 250 candela power is hanging at a distance of 6 m from a wall. The illuminance at a point on the wall at a minimum distance from lamp will be
 - a) 9.64 lux
- b) 4.69 lux
- c) 6.94 lux
- d) None of these
- 832. A glass slab ($\mu = 1.5$) of thickness 6 m is placed over a paper. What is the shift in the shift in the letters?
- b) 2 cm
- c) 1 cm
- d) None of the above
- 833. A glass prism of refractive index 1.5 is immersed in water $\left(\mu = \frac{4}{3}\right)$. Refer figure.

A light beam incident normally on the face AB is totally reflected to reach the face BC if

- a) $2/3 < \sin \theta < 8/9$
- b) $\sin \theta \leq 2/3$
- c) $\cos \theta \ge 8/9$
- d) $\sin \theta > 8/9$
- 834. A simple microscope consists of a concave lens of power -10D and a convex lens of power +20D in contact. If the image is formed at infinity, then the magnifying power

$$CD = 25 \text{ cm is}$$

a) 2.5

b) 3.5

c) 2.0

d) 3.0

- 835. Fraunhoffer lines are obtained in
 - a) Solar spectrum
 - b) The spectrum obtained from neon lamp
 - c) Spectrum from a discharge tube
 - d) None of the above
- 836. The exposure time of a camera lens at the $\frac{f}{2.8}$ setting is $\frac{1}{200}$ second. The correct time of exposure at $\frac{f}{5.6}$ is
 - a) 0.4 s
- b) 0.02 s
- c) 0.002 s
- 837. A light ray is incident by grazing one of the face of a prism and after refraction ray does not emerge out, what should be the angle of prism while critical angle is C
 - a) Equal to 2C
- b) Less than 2C
- c) More than 2C
- d) None of the above

- 838. Stars are not visible in the day time because
 - a) Stars hide behind the sun
 - b) Stars do not reflect sun rays during day
 - c) Stars vanish during the day

	d) Atmosphere scatters su visible	unlight into a blanket of ext	reme brightness through v	which faint stars cannot be
839.	In order to increase the m	nagnifying power of a comp	ound microscope	
		e objective and the eye piec		
	5) 8	small focal length and the e	ye piece large	
	c) Both should have large	370		
	7.0	ave large focal length and e	7	
840.	아일 것 보고 있다면서 얼마나 있는 그리는 경에 발표하게 해를 보고 되었다면서	to be suspended directly ab		
		e light source above the tab		ght is maximum at the
		red to any other height of th	ie source	
	a) $\frac{R}{2}$	b) $\frac{R}{\sqrt{2}}$	c) R	d) $\sqrt{2}R$
841	2	ν2 ng a distance of 500 m in wa	ater Given that u for water	is 4/3 and the velocity of
011.		10 cms $^{-1}$. Calculate equivalent	57	is 1/5 and the velocity of
	a) 566.64 m	b) 666.64 m	c) 586.45 m	d) 576.64 m
842.	5 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	are bent on passing from or	and the second s	
	second medium			9 9 (magazin 200 Tibu da 14 m ili ron di Sangari Sangari (1, 10 di 14 min 14 min 14 min 15 min 15 min 16 mi
	a) The frequency is differ	ent	b) The coefficient of elasti	city is different
	c) The speed is different		d) The amplitude is small	er
843.	The dispersion for a medi	ium of wavelength λ is D , th	en the dispersion for the w	vavelength 2λ will be
	a) D/8	b) D/4	c) D/2	d) <i>D</i>
844.		75 75 75		e lens of focal length 16 cm
	0.70	of the beam at a place O sho	572	
	the lens, the beam conver	ges at a distance x from the	e lens. The value x will be v	alue to
	$\rightarrow 0$			
	12cm →			
	a) 12 cm	b) 24 cm	c) 36 cm	d) 48 cm
845		of refractive index $\mu = 1.5$	THE CANAGE STATES OF THE PARTY	
0.0.	immersed in water $(\mu =$		nao a rocar rengan equalo a	. 12 cm m an 10 10 110 11
	0.0000000000000000000000000000000000000		3.04	13.40
046	a) 48 cm	b) 36 cm	c) 24 cm	d) 12 cm
846.		scattering of two light wave		
047	a) 1: 2	b) $\sqrt{2}:1$	c) 1 : √2	d) 1 : 1
	그렇게 되었다면 있는데 보고 있는데 하는데 하는데 얼마를 하는데 하는데 되는데 하다면 하는데 하였다.	the final image is located a	**************************************	
	a) $\frac{25}{f}$	b) $\frac{D}{26}$	c) $\frac{f}{25}$	d) $\frac{f}{D+1}$
	1	ii-convex lens is greater tha	23	D 1 1
010.	the refractive index of the		in the radias of car vatare o	rany or the surfaces. Then
	a) Greater than zero but l		b) Greater than 1.5 but les	ss than 2.0
	c) Greater than 2.0 but les		d) Greater than 2.5 but les	
849.		l angle in a medium for ligh		
	critical angle for light of y	ellow colour $[\lambda_2]$ will be		
	a) θ	b) More than θ	c) Less than θ	d) $\frac{\theta \lambda_1}{\lambda_2}$
850.				a distance of 2 m from a 60
		osure required for the same	quality print at a distance	of 4 m from a 120 cd lamp
	is	13.40	3.45	1) 20
	a) 5 s	b) 10 s	c) 15 s	d) 20 s

851.	•	one surface is silvered. Lig gh the same path after suff ism is	ering reflection at second s	
	a) 2 sin <i>A</i>	b) 2 cos A	c) $\frac{1}{2}\cos A$	d) tan A
852.	a) Equal to that of the eyeb) Greater than that of thec) Shorter than that of the	eye-piece eye-piece	2	of the objective is
853	d) Five times shorter than A watch shows time as 3:	25 when seen through a m	nirror time anneared will b	ne.
035.	a) 8:35	b) 9:35	c) 7:35	d) 8 : 25
854.	When a convergent beam	of light is incident on a plan	ne mirror, the image forme	d is
	a) upright and real		b) upright and virtual	
	c) inverted and virtual		d) inverted and real	
855.	An achromatic combination			
	a) Images in black and wh	ite		
	b) Coloured images	· · · · · · · · · · · · · · · · · · ·	- 1 - 1 - 1	
	d) Highly enlarged images	ariation of refractive index	with wavelength	
856		to rarer medium. Which o	f the following is correct?	
030.	a) Energy increases	to rarer incurum. Which o	b) Frequency increases	
	c) Phase changes by 90°		d) Velocity increases	
857.	스 경우 아이는 아이는 아이를 보면 없었다면 아프라이 사람들이 주었다고 하시다.	is eves are 10cm below the	[1] [2018년 10 - 10 [2019] [2019년 11 [2019] [2019년 12 [2019년 12 [2019년 12 [2019년 12 [2019년 12 [2019년 12 [2019년	see his entire height right
		a plane mirror kept at a dis	and the same of	
	plane mirror required is	F		8
	a) 180 <i>cm</i>	b) 90 <i>cm</i>	c) 85cm	d) 170cm
858.	In an eye-piece, field lens	and eye lens have focal len	gths 7.5 cm and 7.3 cm. To	eliminate spherical
	aberration, distance between	een them would be		
	a) 0.2 cm	b) 0.4 cm	c) 0.1 cm	d) 0.5 cm
859.	A ray of monochromatic li	ght is incident on one refra	cting face of a prism of ang	le 75°. It passes through
	the prism and is incident of	on the other face at the crit	ical angle. If the refractive i	ndex of the material of the
	prism is $\sqrt{2}$, the angle of in	ncidence on the first face of	the prism is	
	a) 30°	b) 45°	c) 60°	d) 0°
860.	7.70	placed at the bottom of a v		450
	the surface of the liquid. T	rce from above the surface. he centre of the disc lies ve arough a tap. The maximun	ertically above the source S	. The liquid from the vessel
	$\mu = \frac{5}{3}$			
	a) 1.50 cm	b) 1.64 cm	c) 1.33 cm	d) 1.86 cm
861.		2:3 has combination to r	nake no dispersion. Find th	ne ratio of dispersive power
	of glasses used	1) 2 - 2	3.4.0	1) 0 . 4
	a) 2 : 3	b) 3 : 2	c) 4:9	d) 9:4

862. A spherical surface	of radius of curvature R so	eparates air (refractive inde	x 1.0) from glass (refractive
index 1.5). The centre of curvature is in the glass. A point object <i>P</i> placed in air is found to have a real			
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	TO THE PARTY OF TH	na mana na mana mana mana mana mana man	OQ. The distance PO is equal to
a) 5 R	b) 3 R	c) 2 R	d) 1.5 <i>R</i>
863. Fraunhoffer spectral Line absorption		h) Rand absorption	enactrum
c) Line emission sp		b) Band absorptiond) Band emission sp	- 17
		ich permits the passage of li	
refracting angle of	있는데 아이지를 내 때문을 받으면 12세요 () 시간을 받는 해를 맞는다면 하는데 12세요. 10시 MAN () () () () () () () () () (,
a) $\sqrt{3}$	b) $\sqrt{2}$	c) $\frac{\sqrt{3}}{2}$	d) $\frac{3}{2}$
0.00		Z	2
	1000 ID		n focal length such that its image
a) 1	ed and one end touches the b) 2	c) 3	d) 4
	AND THE RESERVE AND ADDRESS OF THE PARTY OF		to be disappeared. The liquid in
the trough could be			
a) Water	b) Kerosene	c) Glycerin	d) Alcohol
867. If F_o and F_e are the	focal length of the objectiv	e and eye piece respectively	of a telescope, then its
magnifying power	will be		
a) $F_o + F_e$	b) $F_o \times F_e$	c) F_o/F_e	d) $\frac{1}{2}(F_o + F_e)$
868. Three glass prisms	A. B and C of same refract		act with each other as shown in
		onochromatic ray of light O	
		of minimum deviation is sat	
The state of the s			
P			
A			
c			
0 0	[⋆] _R		
a) <i>A</i> and <i>C</i>		b) <i>B</i> and <i>C</i>	1.0
c) A and B	centre of retina is called	d) In all prisms A, B	and C
a) Blind spot	b) Yellow spot	c) Red spot	d) None of the above
AND THE PROPERTY OF THE PROPER	20-24 10-25). The focal length of the mirror
in water will be	0 , ()		
a) <i>f</i>	b) $\frac{4}{3}f$	c) $\frac{3}{4}f$	d) $\frac{7}{3}f$
	J	т.	3)
	er of a telescope depends o		sia atius lana
a) Focal length of ec) Length of the tel		b) Focal length of old) Diameter of the of	130
			6.25 cm An object is placed at
	어느 아이지 않아 하는 아이들은 이 사람들은 아이는 아이를 가셨다.		The distance between the two
lenses is			
a) 6.00 cm	b) 7.75 cm	c) 9.25 cm	d) 11.00 cm
	(A)	l beam of light from a small	954
a) Plane mirror	b) Convex mirror	c) Concave mirror	d) Any one of these
			with water, what would happen
to the focal length a	and power of the lens com	omation:	

CLICK HERE >>>

Focal Length	Power		
a) Decreased	b) Decreased	c) Increased	d) Increased
Increased	Unchanged	Unchanged	Decreased
			cope its magnifying power will
be equal to	and mage are at minite dista	nee from a remacting teres	cope its maginiying power win
	e focal lengths of the objective	and the eveniece	
	of the focal lengths of the two le	400 m 100 m	
. 그림, 특별 전통적으로 보다 조리되었다면 보고 있습니다.	e focal length of the objective a		
	e focal length of the eyepiece a		
5			bject is placed at a distance of
177	ens. Its image will be formed a		15/1
a) 25 cm	b) 20 cm	c) 30 cm	d) 40 cm
			gth is 400. The length of its tube
	e focal length of the eye-piece		
a) 200 cm	b) 160 cm	c) 2.5 cm	d) 0.1 cm
	ce of focal lengths of objective		
a) It is equal in b		b) It is more in teleso	
c) It is more in m		d) It may be more in	2019 (5 42)년
지역 기계를 보고 있다면 하는 것이 되었다. 그 사람들이 되었다. 그 사람들이 되었다. 그 사람들이 되었다. 			ings of first reflected image are
	0'; Vernier II : 140° 30' and the		
	24'. Then the angle of the prisn		
a) 59° 58′	b) 59° 56′	c) 60° 2′	d) 60° 4′
880. When light trave	ls from glass to air, the inciden	t angle is θ_1 and the refract	ted angle is θ_2 . The true relation
is			
a) $\theta_1 = \theta_2$	b) $\theta_1 < \theta_2$	c) $\theta_1 > \theta_2$	d) Not predictable
881. The minimum di	stance between the object and	its real image for concave i	mirror is
a) <i>f</i>	b) 2 <i>f</i>	c) 4f	d) Zero
882. In Huygen's eyep	iece		
a) The cross wire	es are outside the eyepiece		
b) Condition for	achromatism is satisfied		
c) Condition for	minimum spherical aberration	is not satisfied	
d) The image for	med by the objective is a virtua	l image	
883. A convex lens for	ms an image of an object place	d 20 cm away from it at a o	listance of 20 cm on the other
side of the lens. I	f the object is moved 5 cm towa	ards the lens, the image wi	ll move
a) 5 cm towards	the lens	b) 5 cm away from the	ne lens
c) 10 cm toward	s the lens	d) 10 cm away from	the lens
884. The power of the	combination of a convex lens	of focal length 50 cm and c	oncave lens of focal length 40 cm
is			
a) +1 D	b) -1 D	c) Zero	d) -0.5 D
885. How much water	should be filled in a container	21 cm in height, so that it	appears half filled when viewed
from the top of the	ne container (given that $_a\mu_\omega=$	4/3)	
a) 8.0 cm	b) 10.5 cm	c) 12.0 cm	d) None of the above
886. A ray of light trav	vels from an optically denser to	rarer medium. The critica	l angle for the two media is \mathcal{C} .
The maximum po	ossible deviation of the ray will	be	

a) $\left(\frac{\pi}{2} - C\right)$	b)
87. 60° prism has $\mu = \sqrt{2}$. Angle
a) 45°	b)
88. Magnification of a con	npound
at a distance of distin	ct visio
a) 6	b)
89. The diameter of object	tive of
a) 5.54×10^{-7} rad	b)
90. Band spectrum is obta	
Band spectrum is cha	racteris
a) Atoms	b)
91. Refractive index of gla	ass witl
medium and glass is 6	
a) $2.5 \times 10^8 \text{ms}^{-1}$	b)
92. In fog, photographs of	the ob
during visible light be	cause
a) $I - R$ radiation has	lesser
b) Scattering of $I - R$	light is

- 2C c) $\pi - 2C$
- d) πC
- 8 of incidence for minimum deviation is

c) 60°

- 8 d microscope is 30. Focal length of eye-piece is 5 cm and the image is formed n of 25 cm. The magnification of the objective lens is

c) 7.5

- d) 10
- 8 a telescope is 1 m. its resolving limit for the light of wavelength 4538 Å, will
 - $2.54 \times 10^{-4} \, \text{rad}$
- c) 6.54×10^{-7} rad
- d) None of the above
- when the source emitted light is in the form of or 8 stic of
 -) Molecules
- c) Plasma
- d) None of the above
- h respect to medium is $\frac{4}{3}$. If the differences between velocities of light in 8 10⁷ms⁻¹, then velocity of light in medium is
 - $0.125 \times 10^8 \text{ms}^{-1}$
- c) $1.5 \times 10^8 \text{ms}^{-1}$
- 8 jects taken with infrared radiations are more clear than those obtained
 - wavelength than visible radiation
 - more than visible light
 - c) The intensity of I R light from the object is less
 - d) Scattering of I R light is less than visible light
- 893. A double convex lens of glass of $\mu = 1.5$ has radius of curvature of each of its surface is 0.2 m. The power of the lens is
 - a) +10 dioptres
- b) -10 dioptres
- c) -5 dioptres
- d) +5 dioptres
- 894. A ray of light is incident on the surface of separation of a medium at an angle 45° and is refracted in the medium at an angle 30°. What will be the velocity of light in the medium
 - a) $1.96 \times 10^8 \, m/s$
- b) $2.12 \times 10^8 \ m/s$
- c) $3.18 \times 10^8 \, m/s$
- d) $3.33 \times 18^8 \ m/s$
- 895. Two convex lenses placed in contact form the image of a distant object at P. If the lens B is moved to the light, the image will

- a) Move to the left
- b) Move to the right
- c) Remain at P
- d) Move either to the left to right, depending upon focal length of the lenses
- 896. The separation between two microscopic particles is measured P_A and P_B by two different lights of wavelength 2000 Å and 3000 Å respectively, then
- b) $P_A < P_B$
- c) $P_A < 3/2P_B$
- d) $P_A = P_B$
- 897. If h_1 and h_2 are the heights of the images in conjugate position of a convex lens, then the height of the object is
 - a) $h_1 + h_2$
- b) $h_1 h_2$
- c) h_1/h_2
- 898. When a glass prism of refracting angle 60° is immersed in a liquid its angle of minimum deviation is 30°. The critical angle of glass with respect to the liquid medium is

- d) 52°
- 899. An object is placed in front of a convex mirror of focal length f. Find the maximum and minimum distance of two object from the mirror such that the image is real and magnified.

- a) 20 and ∞
- b) f and 2f
- c) f and 0
- d) None of these
- 900. An object is kept at a distance of 16 cm from a thin lens and the image formed is real. If the object is kept at a distance of 6 cm from the same lens, the image formed is virtual. If the sizes of the images formed are equal the focal length of the lens will be
- b) 11 cm
- c) 15 cm
- 901. A student measures the focal length of a convex lens by putting an object pin at a distance ufrom the lens and measuring the distance v of the image pin. The graph between u and v plotted by the student should

- 902. When a plane mirror is rotated through an angle θ then the reflected ray turns through the angle 2θ then the size of the image
 - a) Is doubled
- b) Is halved
- c) Remains the same
- d) Becomes infinite
- 903. Each quarter of a vessel of depth H is filled with liquids of the refractive indices n_1 , n_2 , n_3 and n_4 from the bottom respectively. The apparent depth of the vessel when looked normally is

a)
$$\frac{H(n_1 + n_2 + n_3 + n_4)}{4}$$
 b) $\frac{H(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4})}{4}$ c) $\frac{(n_1 + n_2 + n_3 + n_4)}{4H}$ d) $\frac{H(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4})}{2}$

c)
$$\frac{(n_1 + n_2 + n_3 + n_4)}{4H}$$

d)
$$\frac{H\left(\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{n_4}\right)}{2}$$

- 904. One of the refracting surfaces of a prism of angle 30° is silvered. A ray of light incident at an angle of 60° retraces its path. The refractive index of the material of prism is

b) 3/2

- 905. Light travels through a glass plate of thickness t and having refractive index n. If c is the velocity of light in vacuum, the time taken by the light to travel this thickness of glass is

b) tnc

- 906. A glass prism ABC (refractive index 1.5), immersed in water (refractive index 4/3). A ray of light is incident normally on face AB. If it is totally reflected at face AC then

- a) $\sin \theta \ge \frac{3}{9}$

- b) $\sin \theta \ge \frac{2}{3}$ c) $\sin \theta = \frac{\sqrt{3}}{2}$ d) $\frac{2}{3} < \sin \theta < \frac{8}{9}$
- 907. A microscope is focused on a coin lying at the bottom of a beaker. The microscope is now raised up by 1 cm. To what depth should the water be poured into the beaker so that coin is again in focus? (Refractive index of water is $\frac{4}{2}$)

- d) 4 cm

908. 'Mirage' is a phenomenon due to

c) Total	internal
9. Two sim	ilar plan
figure. T	he ratio d
\triangle	1

a) Reflection of light

b) Refraction of light

- reflection of light
- d) Diffraction of light
- o-convex lenses are combined together in three different ways as shown in the adjoining 90 of the focal lengths in three cases will be

- a) 2:2:1
- b) 1:1:1
- c) 1:2:2
- d) 2:1:1

- 910. The unit of focal power of a lens is
 - a) Watt
- b) Horse power
- c) Dioptre
- d) Lux
- 911. The refractive index of water is 1.33. The direction in which a man under water should look to see the setting sun is
 - a) 49° to the horizontal
- b) 90° with the vertical
- c) 49° to the vertical
- d) Along the horizontal
- 912. The critical angle between an equilateral prism and air is 45°. If the incident ray is perpendicular to the refractive surface, then
 - a) After deviation it will emerge from the second refracting surface
 - b) It is totally reflected on the second surface and emerges out perpendicularly from third surface in air
 - c) It is totally reflected from the second and third refracting surfaces and finally emerges out from the first surface
 - d) It is totally reflected from all the three sides of prism and never emerges out
- 913. PQR is a right angled prism with other angles as 60° and 30°. Refractive index of prism is 1.5. PQ has a thin layer of liquid. Light falls normally on the face PR. For total internal reflection, maximum refractive index of liquid is

a) 1.4

b) 1.3

c) 1.2

- d) 1.6
- 914. In the formation of primary rainbow, the sunlight rays emerge at minimum deviation from rain-drop after
 - a) One internal reflection and one refraction
 - b) One internal reflection and two refraction
 - c) Two internal reflection and one refraction
 - d) Two internal reflection and one refraction
- 915. A ray of light enters from a rarer to a denser medium. The angle of incidence is i. Then the reflected and refracted rays are mutually perpendicular to each other. The critical angle for the pair of media is
 - a) $\sin^{-1}(\tan i)$
- b) $tan^{-1} (sin i)$
- c) $\sin^{-1}(\cot i)$
- d) $\cos^{-1}(\tan i)$
- 916. The focal length of the objective and the eye-piece of a microscope are 4 mm and 25 mm respectively. If the final image is formed at infinity and the length of the tube is 16 cm, then the magnifying power of microscope will be
 - a) -337.5
- b) -3.75
- c) 3.375
- d) 33.75
- 917. A glass convex lens ($\mu_q = 1.5$) has a focal length of 8 cm when placed in air. What would be the focal length of the lens what it is immersed in water ($\mu_{\omega} = 1.33$)
 - a) 2 m
- c) 16 cm
- 918. If a flint lens glass of dispersive power 0.0666 renders achromatic to a convex lens of crown glass of focal length 60 cm and dispersive power 0.033, then its focal length is

•	other. Where show	ıld a screen be placed betw	이 나가 하다 이 이번 것으로 하다는 것이 하면 하는 것이 하는 것이 없는 것이 없는데 그렇게 되었다.	d) $+120$ cm ng at a distance of $1.2 m$ from each s two faces are equally illuminated
	due to two source		b) 10 f 22	Cdlama
	a) 10 cm from 8 C c) 40 cm from 8 C	•	b) 10 cm from 32d) 40 cm from 32	
•	250			ted by a distance of 20 cm, their
	equivalent power	becomes $+\frac{27}{5}$ D. Their ind	ividual powers (in dioptre) are
	a) 4, 5	b) 3, 6	c) 2, 7	d) 1, 8
•	reflected wave is	equal to	erface between air and glas	s, the change of phase of the
	a) Zero	b) $\frac{\pi}{2}$	c) π	d) 2π
	922. Least distance of o	distinct vision is 25 <i>cm</i> . Mag	gnifying power of simple n	nicroscope of focal length 5 cm is
	a) 1/5	b) 5	c) 1/6	d) 6
•				en is equivalent to 1.5×10^{-3} wat
				6000 Å is 0.685 while that for
	5550 A is 1.00, the a) $4 \times 10^3 lm$	en the luminous flux of the b) $3 \times 10^3 lm$	source is c) $2 \times 10^3 lm$	d) $1.37 \times 10^3 lm$
	V.593		95	m. The ratio of illuminaces at the
	centre and the edg	ge is		
	a) $\frac{1}{2}$	b) $(\frac{5}{3})^{\frac{3}{2}}$	c) $\frac{4}{3}$	d) $\frac{4}{5}$
्		noon is 3.5×10^3 km and its eye-piece are 4 m and 10 cr	m respectively. The diamet	3.8×10^5 km. The focal length of the image of the moon will be
	a) 2°	b) 21°	c) 40°	d) 50°
	silvered. A ray of l		ther refracting face. After l it. The angles of the prism	One of the refracting faces is being reflected twice, it emerges are d) 57°, 57°, 76°
•				with a liquid. The lens has focal
			nas refractive index 1.50. If	the liquid has refractive index
	Liquid	gth of the system is		
	a) +80 cm	b) -80 <i>cm</i>	c) -24 cm	d) $-100 \ cm$
•	: 1987년 1일 시민국 경기 전 1987년 1987년 1987년 1987년 1	of the lenses of an astronon te image is formed at the lea	ast distance of distinct visi	400-400 gamen an 100-400 may - an 100-500 m
	a) 45 <i>cm</i>	b) 55 cm	c) $\frac{275}{6}$ cm	d) $\frac{325}{6}$ cm
	929. For a telescope to a) Focal length of b) Focal length of c) Focal length of d) Aperture of its	have large resolving power its objective should be larg its eye piece should be larg its eye piece should be sma objective should be large g statements are correct ex	r the e ge all	6

CLICK HERE >>>

	a) The magnification prod	duced by a convex mirror is	always less than one	
		ized image can be obtained		
	c) A virtual, erect, magnif	ied image can be formed us	sing a concave mirror	
	d) A real, inverted, same-s	sized image can be formed	using a convex mirror	
931.	A beam of light composed	of red and green rays is in	cident obliquely at a point	on the face of a rectangular
	1070	out on the opposite parallel		100
	a) Two points propagatin	g in two different non-para	illel directions	
	b) Two point propagating	in two different parallel di	rections	
	c) One point propagating	in two different directions		
	d) One point propagating	in the same direction		
932.	The wavelength of light d	iminishes μ times ($\mu = 1.33$	3 for water) in a medium. A	diver from inside water
	looks at an object whose i	natural colour is green. He s	sees the object as	
	a) Green	b) Blue	c) Yellow	d) Red
933.	A virtual image larger tha	n the object can be obtaine	d by	
	a) Concave mirror	b) Convex mirror	c) Plane mirror	d) Concave lens
934.	As the wavelength is incre	eased from violet to red, the	e luminosity	
	a) Continuously increases		b) Continuously decrease	
	c) Increases then decreas		d) Decreases then increas	
935.	크리크 구성 및 경기의 회사 작가요	선 교육의 기계 전환 시간 전기 (F) 전기 20 기계 전 시간 시간 (H)	e deviation of a monochror	natic ray incident normally
	on its one surface will be	14 (19 Per 19 Pe	12 1000000	100 (600)000
	a) 18°36′	b) 20° 30′	c) 18°	d) 22°1′
936.		observes image of 2 m heig		
005	a) Concave	b) Convex	c) Plane	d) None of the above
937.		diminished virtual image o	f magnification 1/3. Focal I	ength is 18 cm. The
	distance of the object is	13.26	3.40	D. L. C. Jr.
020	a) 18 cm	b) 36 cm	c) 48 cm	d) Infinite
938.		ngle 4° and refraction index		
	snown in figure. I frough	what total angle is the ray	deviated after reflection fro	om the mirror
	4.			
	90°			
	a) 176°	b) 4°	c) 178°	d) 2°
939.		vn glass having refractive ii	ndex 1.5 has power 1 D. W	hat will be the power of
	similar convex lens refrac			
	a) 0.6 D	b) 0.8 D	c) 1.2 D	d) 1.6 D
940.				e of one kilometer from two
	- : [- [- [- [- [- [- [- [- [-	tance between these two o	를 1명하는 사람들이 Heart 및 전력이 하는 역사 전략이 되는 사람이 되었다.	ed by the telescope, when
		ight is 5000 Å, is of the orde		
	a) 0.5 m	b) 5 m	c) 5 mm	d) 5 <i>cm</i>
941.		omatic doublet should have	e	
	a) Equal powers			
	b) Equal dispersive powe			
	c) Equal ratio of their pov			
042	55 ST	heir powers and dispersive		
942.	A large glass slab $\left(\mu = \frac{3}{3}\right)$	of thickness 8 cm is placed	over a point source of ligh	t on a plane surface. It is
	seen that light emerges or	ut of the top surface of the s	slab from a circular area of	radius R cm. What is the
	value of R?			
	a) 6 cm	b) 7 cm	c) 8 cm	d) 9 cm

- 943. The light reflected by a plane mirror may form a real image
 - a) If the rays incident on the mirror are diverging
 - b) If the rays incident on the mirror are converging
 - c) If the object is placed very close to the mirror
 - d) Under no circumstances
- 944. If the refractive index of a material of equilateral prism is $\sqrt{3}$, then angle of minimum deviation of the prism is
 - a) 30°

- d) 75°
- 945. Monochromatic light of wavelength λ_1 travelling in medium of refractive index n_1 enters a denser medium of refractive index n_2 . The wavelength in the second medium is
- b) $\lambda_1\left(\frac{n_2}{n_1}\right)$

- d) $\lambda_1 \left(\frac{n_2 n_1}{n_1} \right)$
- 946. The wavelength of emission line spectrum and absorption line spectrum of a substance are related as
 - a) Absorption has larger value

b) Absorption has smaller value

c) They are equal

- d) No relation
- 947. What is the angle of incidence for an equilateral prism of refractive index $\sqrt{3}$ so that the ray is parallel to the base inside the prism?

b) 45°

c) 60°

- d) Either 30° or 60°
- 948. Two thin lenses whose powers are +2D and -4D respectively combine, then the power of combination is
 - a) -2D
- b) +2D
- c) -4D
- 949. An equiconvex lens is cut into two halves along (i) XOX' and (ii) YOY' as shown in the figure. Let f, f', f''be the focal lengths of the complete lens, of each half in case (i), and of each half in case (ii), respectively.

Choose the correct statement from the following

- a) f' = 2f, f'' = f
- b) f' = f, f'' = f c) f' = 2f, f'' = 2f d) f' = f, f'' = 2f
- 950. One side of a glass slab is silvered as shown. A ray of light is incident on the other side at angle of incidence $i = 45^{\circ}$. Refractive index of glass is given as 1.5. the deviation of the ray of light from its initial path when it comes out of the slab is

a) 90°

- b) 180°
- c) 120°
- d) 45°
- 951. Two plano-concave lenses (1 and 2) of glass of refractive index 1.5 have radii of curvature 25 cm and 20 cm. They are placed in contact with their curved surfaces towards each other and the space between them is filled with liquid of refractive index $\frac{4}{3}$. Then the combination is

a) Convex of focal length 70 cm

- b) Concave of focal length 70 cm
- c) Concave of focal length 66.6 cm
- d) Convex of focal length 66.6 cm
- 952. Why is refractive index in a transparent medium greater than one?

- a) Because the speed of light in vacuum is medium
- b) Because the speed of light in vacuum is always greater than speed in a transparent medium
- c) Frequency of wave changes when it crosses medium
- d) None of the above
- 953. An equiconvex lens of glass of focal length 0.1 metre is cut along a plane perpendicular to principal axis into two equal parts. The ratio of focal length of new lenses formed is
 - a) 1:1
- b) 1:2
- c) 2:1
- d) 2: $\frac{1}{2}$
- 954. A point object is placed on the axis of the concave mirror at a distance of 60 cm from the focal point of the mirror. Its image is formed at the point of object, then focal length of the mirror is
 - a) 15 cm
- b) 30 cm
- c) 60 cm
- d) 120 cm
- 955. A ray of light is incident on a plane mirror at an angle 57°. The resultant polarized light vibrates in a plane which makes an angle with the reflecting surface

b) 90°

c) 57°

- d) 33°
- 956. Critical angle is that angle of incidence in the denser medium for which the angle of reflection in rarer medium is
 - a) 0°

b) 57°

- c) 90°
- d) 180°
- 957. The focal length of a plano convex lens is f and its refractive index is 1.5. It is kept over a plane glass plate with its curved surface touching the glass plate is filled by a liquid. As a result, the effective focal length of the combination becomes 2f. Then the refractive index of the liquid is
 - a) 1.5

b) 2

- d) 1.33
- 958. The critical angle for a medium is 60°. The refractive index of the medium is

- 959. A man of length h requires a mirror, to see his own complete image of length at least equal to

- b) h/3
- c) h/2

- 960. An object placed 10 cm in front of a lens has an image 20 cm behind the lens. What is the power of the lens (in dioptres)
 - a) 1.5

b) 3.0

- c) -15.0
- d) + 15.0
- 961. The angle of minimum deviation measured with a prism is 30° and the angle of prism is 60°. The refractive index of prism material is
 - a) $\sqrt{2}$

b) 2

c) 3/2

- d) 4/3
- 962. A convex lens made of glass has focal length 0.15 m in air. If the refractive index of glass is $\frac{3}{2}$ and that of water is $\frac{4}{3}$, the focal length of lens when immersed in water is

- 963. The refractive index of the material of the prism and liquid are 1.56 and 1.32 respectively. What will be

the value of θ for the following refraction

- a) $\sin \theta \ge \frac{13}{11}$
- b) $\sin \theta \ge \frac{11}{13}$
- c) $\sin \theta \ge \frac{\sqrt{3}}{3}$
- d) $\sin \theta \ge \frac{1}{\sqrt{2}}$
- 964. Which of the following ray diagram show physically possible refraction

intersect at a poin	t 15 cm from the lens on t	liverging lens. Having passed he opposite side. If the lens The focal length of the lens	is removed the point where the
a) $-30 cm$	b) 5 cm	c) -10 cm	d) 20 cm
	de up of a material of refra gure. The relation between		in a medium of refractive index μ_2

a) $\mu_1 < \mu_2$

b) $\mu_1 > \mu_2$

c) $\mu_1 = \mu_2$

d) $\mu_1 = \sqrt{\mu_2}$

980. A small plane mirror placed at the centre of a spherical screen of radius R. A beam of light is falling on the mirror. If the mirror makes n revolution per second, the speed of light on the screen after reflection from the mirror will be

a) $4\pi nR$

b) $2\pi nR$

981. Two lenses are placed in contact with each other and the focal length of combination is 80 cm. If the focal length of one is 20 cm, then the power of the other will be

b) 4.00 D

c) -1.00 D

d) -3.75 D

982. Light from sodium lamp is passed through cold sodium vapours, the spectrum of transmitted light consists of

a) A line at 5890 Å

b) A line at 5896 Å

c) Sodium doublet lines d) No spectral features

983. At what distance from a convex lens of focal length 30 cm, an object should be placed, so that the size of the image be the object?

b) 60 cm

c) 15 cm

d) 90 cm

984. If tube length of astronomical telescope is 105 cm and magnifying power is 20 for normal setting, calculate the focal length of objective

a) 100 cm

b) 10 cm

c) 20 cm

d) 25 cm

985. A plane mirror is approaching you at 10 cms⁻¹. Your image shall approach you will a speed of

a) $+10 \text{ cms}^{-1}$

b) -10 cms^{-1}

c) $+ 20 \text{ cms}^{-1}$

d) -20 cms^{-1}

986. The reason of seeing the Sun a little before the sunrise is

a) Reflection of the light

b) Refraction of the light

c) Scattering of the light

d) Dispersion of the light

987. The focal length (f) of a spherical (concave or convex) mirror of radius of curvature R is

d) 2R

988. A double convex thin lens made of glass (refractive index $\mu = 1.5$) has both radii of curvature of magnitude 20 cm. Incident light rays parallel to the axis of the lens, will converge at a distance L such that

a) $L = \frac{20}{3}$ cm

b) L = 40 cm

c) L = 20 cm

d) L = 10 cm

989. Light is incident from a medium X at an angle of incidence i and is refracted into a medium Y at angle of refraction r. The graph sin i versus sin r is shown in figure. Which of the following conclusions would fit the situation?

1. Speed of light in medium Y is $\sqrt{3}$ times that in medium X

2. Speed of light in medium Y is $1/\sqrt{3}$ times that in medium X

3. Total internal reflection will occur above a certain i value

a) 2 and 3

b) 1 and 3

c) 2 only

990. A ray of light propagates from glass (refractive index = $\frac{3}{2}$) to water (refractive index = $\frac{4}{3}$). The value of the critical angle is

a) $\sin^{-1}\left(\frac{1}{2}\right)$

b) $\sin^{-1}\left(\sqrt{\frac{9}{8}}\right)$

c) $\sin^{-1}\left(\frac{8}{9}\right)$

d) $\sin^{-1}\left(\frac{5}{7}\right)$

991. A given ray of light suffers minimum deviation in an equilateral prism P. Additional prisms Q and of identical shape and material are now added to P, as shown in the figure. The ray will suffer

a) Same deviation

b) Greater deviation

c) Total internal reflection

d) No deviation

992. Refractive index of a medium is μ . The incidence angle is twice that of refracting angle. The angle of incidence is

a) $\cos^{-1}\left(\frac{\mu}{2}\right)$

b) $\sin^{-1}\left(\frac{\mu}{2}\right)$

c) $2\cos^{-1}(\frac{\mu}{2})$

d) $\sin^{-1}\mu$

993. A plane mirror makes an angle of 30° with horizontal. If a vertical ray strikes the mirror, find the angle between mirror and reflected ray

c) 60°

994. A microscope is focused on an ink mark on the top of a table. If we place a glass slab of 3 cm thick on it, how should the microscope be moved to focus the ink spot again? The refractive index of glass is 1.5.

a) 2 cm upwards

b) 2 cm downwards

c) 1 cm upwards

d) 1 cm downwards

995. A ray of light makes an angle of 10° with the horizontal above it and strikes a plane mirror which is inclined at an angle θ to the horizontal. The angle θ for which the reflected ray becomes vertical is

a) 40°

b) 50°

c) 80°

d) 100°

996. Image is formed for the short sighted person at

a) Retina

b) Before retina

c) Behind the retina

d) Image is not formed at all

997. P is a point on the axis of a convex mirror. The image of P formed by the mirror, coincides with P. A rectangular glass slab of thickness t and refractive index μ is now introduced between P and the mirror. For the image of *P* to coincide with *P* again, the mirror must be moves

a) Towards P by $(\mu - 1)t$

b) Away from P by $(\mu - 1)t$

c) Towards P by $t\left(1-\frac{1}{n}\right)$

d) Away from P by $t\left(1-\frac{1}{\mu}\right)$

998. If angle of incidence is twice the angle of refraction in a medium of refractive index μ , then angle of incidence is

a) $2 \cos^{-1} \left[\frac{\mu}{2} \right]$

b) $2 \sin^{-1} \left[\frac{\mu}{2} \right]$

c) $2\cos^{-1}[\mu]$

d) $2 \sin^{-1}[\mu]$

999. A wire mesh consisting of very small squares is viewed at a distance of 8 cm through a magnifying converging lens of focal length 10cm, kept close to the eye. The magnification produced by the lens is

a) 5

b) 8

c) 10

d) 20

100 A concave lens of focal length 20 cm placed in contact with a plane mirror acts as a convex mirror of focal

- 0. length
 - a) 10 cm
- b) 40 cm
- c) 60 cm
- d) 20 cm

100 Which of the following colours suffers maximum deviation in a prism

- 1.
- a) Yellow
- b) Blue
- c) Green
- d) Orange

100 The band spectra (characteristic of molecular species) is due to emission of radiation

- 2.
 - a) Gaseous state
- b) Liquid state
- c) Solid state
- d) All of three states

100 If an object moves towards a plane mirror with a speed v at an angle θ to the perpendicular to the plane of

3. the mirror, find the relative velocity between the object and the image

a) v

b) 2v

- c) $2v\cos\theta$
- d) $2v \sin \theta$

100 The dispersive power is maximum for the material

- 4.
- a) Flint glass
- b) Crown glass
- c) Mixture of both
- d) None of the above

100 A convex lens is immersed in a liquid, whose refractive index is equal to the refractive index of the

- 5. material of the lens. Then its focal length will
 - a) Decrease
- b) Become zero
- c) Become infinite
- d) Increase

100 The impact of an image on the retina remains for

- 6.
- a) 0.1 s
- b) 0.5 s
- c) 10 s
- d) 15 s

100 Two lenses have focal lengths f_1 and f_2 and their dispersive powers are ω_1 and ω_2 respectively. They will

- 7. together from an achromatic combination if
 - a) $\omega_1 f_1 = \omega_2 f_2$
- b) $\omega_1 f_2 + \omega_2 f_1 = 0$
- c) $\omega_1 + f_1 = \omega_2 + f_2$
- d) $\omega_1 f_1 = \omega_2 f_2$

 $100\,$ A ray of light is incidenting normally on a plane mirror. The angle of reflection will be

- 8.
- a) 0°

- b) 90°
- c) Will not be reflected
- d) None of the above

100 A ray of light coming. Which of the following figures, shows dispersion of light?

9.

a)

b)

c)

d)

101 Immiscible transparent liquids A, B, C, D and E are placed in a rectangular container of glass with the

liquids making layers according to their densities. The refractive index of the liquids are shown in the
adjoining diagram. The container is illuminated from the side and small piece of glass having refractive
index 1.61 is gently dropped into the liquid layer. The glass piece as it descends downwards will not be
visible in

Α	1.51
В	1.53
С	1.61
D	1.52
E	1.65

- a) Liquid A and B only
- b) Liquid C only
- c) Liquid D and E only
- d) Liquid A, B, D and E
- 101 Three prisms 1, 2 and 3 have the prism angle $A = 60^{\circ}$, but their refractive indices are respectively 1.4, 1.5
- and 1.6. If δ_1 , δ_2 , δ_3 be their respective angles of deviation then

a)
$$\delta_3 > \delta_2 > \delta_1$$

b)
$$\delta_1 > \delta_2 > \delta_3$$

c)
$$\delta_1 = \delta_2 = \delta_3$$

d)
$$\delta_2 > \delta_1 > \delta_3$$

- 101 A ray of light travelling in water is incident on its surface open to air. The angle of incidence is θ , which is
- less than the critical angle. Then there will be
 - a) Only a reflected ray and no reflected ray
 - b) Only a reflected ray and no reflected ray
 - c) A reflected ray and a refracted ray and the angle between then would be less than $108^{\circ}-2\theta$
 - d) A reflected ray and a refracted ray and the angle between then would be greater than $108^{\circ}-20$
- 101 A ray of light is incident on the hypotenuse of a right-angled prism after travelling parallel to the base
- inside the prism. If μ is the refractive index of the material of the prism, the maximum value of the base angle for which light is totally reflected from the hypotenuse is

a)
$$\sin^{-1}\left(\frac{1}{u}\right)$$

b)
$$\tan^{-1}\left(\frac{1}{\mu}\right)$$

c)
$$\sin^{-1}\left(\frac{\mu-1}{\mu}\right)$$
 d) $\cos^{-1}\left(\frac{1}{\mu}\right)$

d)
$$\cos^{-1}\left(\frac{1}{\mu}\right)$$

- 101 A bi-convex lens is formed with two thin plano-convex lenses as shown in the figure. Refractive index n of
- the first lens is 1.5 and that of the second lens is 1.2. Both the curved surfaces are of the same radius of curvature R = 14 cm. For this bi-convex lens, for an object distance of 40cm, the image distance will be

- a) -280.0cm
- b) 40.0 cm
- c) 21.5 cm
- d) 13.3 cm

101 The hyper-metropia is a

a) Short-side defect

b) Long-side defect

c) Bad vision due to old age

- d) None of these
- 101 The wavelength of sodium light in air is 5890Å. The velocity of light in air is 3×10^{-8} ms⁻¹. The wavelength
- of light in a glass of refractive index 1.6 would be close to
- b) 3681Å
- c) 9424Å
- 101 A thin plano-convex lens acts like a concave mirror of focal length 0.2 m when silvered from its plane
- 7. surface. The refractive index of the material of the lens is 1.5. The radius of curvature of the convex surface the lens will be
 - a) 0.1 m
- b) 0.75 m
- c) 0.4 m
- d) 0.2 m
- 101 A ray of light passes through an equilateral prism such that an angle of incidence is equal to the angle of
- emergence and the latter is equal to $\frac{3}{4}$ th the angle of prism. The angle of deviation is
 - a) 45°

101 The magnification of the image when an object is placed at a distance x from the principle focus of a mirror

- 9. of focal length f is
 - a) $\frac{x}{f}$

- b) $1 + \frac{f}{x}$
- c) $\frac{f}{x}$

d) $1 - \frac{f}{x}$

102 A convex lens of focal length 30 cm and a concave lens of 10 cm focal length are placed so as to have the

- 0. same axis. If a parallel beam of light falling on convex lens leaves concave lens as a parallel beam, then the distance between two lenses will be
 - a) 40 cm
- b) 30 cm
- c) 20 cm
- d) 10 cm

102 How will the image formed by a convex lens be affected, if the central portion of the lens is wrapped in

1. blank paper, as shown in the figure

a) No image will be formed

- b) Full image will be formed but is less bright
- c) Full image will be formed but without the central portion
- d) Two images will be formed, one due to each exposed half

102 A convex lens forms a real image of a point object placed on its principal axis. If the upper half of the lens is

- 2. painted black, the image will
 - a) Be shifted downwards

b) Be shifted upwards

c) Not be shifted

d) Shift on the principal axis

102 A telescope has an objective lens of focal length 200 cm and an eye piece with focal length 2 cm. If this

- 3. telescope is used to see a 50 *meter* tall building at a distance of 2 *km*, what is the height of the image of the building formed by the objective lens
 - a) 5 cm
- b) 10 cm
- c) 1 cm
- d) 2 cm

102 A small fish 0.4 m below the surface of a lake, is viewed through a simple converging lens of focal length

4. 3 m. The lens is kept at 0.2 m above the water surface such that fish lies on the optical axis of the lens. The image of the fish seen by observer will be at $\left(\mu_{water} = \frac{4}{3}\right)$

- a) A distance of 0.2 m from the water surface
- b) A distance of 0.6 m from the water surface
- c) A distance of 0.3 m from the water surface
- d) The same location of fish

102 If the focal length of the lens is 20 cm, what is the distance of the image from the lens in the following

5. figure?

	a) 5.5 cm b) 7.5 cm	c) 12.0 cm	d) 20.0 cm
10	2 Angle of minimum deviation for a prism of refractiv	e index 1.5 is equal to the a	ngle of the prism. The angle
6.			
	a) 82° - 49′ - 12″ b) 72° - 48′ - 30″	c) 41° – 24′ – 36″	d) 31° – 49′ – 30″
	2 Dispersion can take place for		
7.			
	a) Transverse waves only but not for longitudinal w		
	b) Longitudinal waves only but not for transverse wc) Both transverse and longitudinal waves	aves	
	d) Neither transverse nor longitudinal		
10	22 Lens used to remove long sightedness (hypermetro	pia) is or	
8.	A person suffering from hypermetropia requires wh	nich type of spectacle lenses	S
	a) Concave lens	b) Plano-concave lens	
	c) Convexo-concave lens	d) Convex lens	
	2 Which of the following statement is true		
9.			
	a) Velocity of light is constant in all mediab) Velocity of light in vacuum is maximum		
	c) Velocity of light is same in all reference frames		
	d) Laws of nature have identical form in all reference	ce frames	
10	3 A concave mirror is used to focus the image of a flow		n from the flower. If a
0.	3	f the flower from the mirro	r should be
	a) 8 cm b) 12 cm	c) 80 <i>cm</i>	d) 120 cm
	3 Which of the following graphs show appropriate va	riation of refractive index μ	with wavelength λ
1.	a) .	c) . ^	d) . 1
			u) ↑
720	$\lambda \rightarrow \lambda \rightarrow$	$\lambda \rightarrow$	$\lambda \rightarrow$
	3 The image formed by an objective of a compound m	icroscope is	
2.	a) Virtual and diminished	b) Real and diminished	
	c) Real and enlarged	d) Virtual and enlarged	
10	3 For a convex lens the distance of the object is taken	37	of the image is taken on Y-
3.	THE VOICE AS MINISTER MAY EXCENDED THE	for	
	a) Straight line b) Circle	c) Parabola	d) Hyperbola
10	3 A bulb of $100watt$ is hanging at a height of one met	er above the centre of a cir	cular table of diameter 4 $\it m$.
4.	, ·	tensity at the centre of the t	
	a) I_0 b) $2\sqrt{5}I_0$	c) 2 <i>I</i> ₀	d) 5√5 <i>I</i> ₀
	3 A book can be read if it is placed at a distance of 50	cm from a source of 1 cd. At	what distance should the
5.		1.2	D 1
1/	a) 8 m b) 4 m 3 A concave mirror gives an image three times as larg	c) 2 m	d) 1 m
6.		e as the object placed at a d	ilstance of 20 cm from it.
U.	a) 10 cm b) 15 cm	c) 20 cm	d) 30 cm
10	33 The focal length of a concave mirror is 20 cm. Wher	100 00 00 00 00 00 00 00 00 00 00 00 00	
7.	<u> </u>		
	a) 30 cm from the mirror	b) 10 cm from the mirror	
	c) 20 cm from the mirror	d) 15 cm from the mirror	

	Myopia is due to		
8.	a) Elongation of eye ball	h) Irregula	ar change in focal length
	c) Shortening of eye ball	d) Older a	
103	A convex lens of focal length $\frac{1}{3}$ m	forms a real, inverted image to	wice in size of the object. The distance of
9.	the object form the lens is		
23200	a) 0.5 m b) 0.16		d) 1 m
104 0.	A white screen illuminated by gre	en and red light appears to be	
0.	a) Green b) Red	c) Yellow	d) White
104	When the rectangular metal tank	is filled to the top with an unk	nown liquid, as observer with eyes level
1.		나는 아이들이 아이들이 아이들이 살아 아이를 하는데	acts towards the observer at the top
	surface of the liquid is shown. The	refractive index of the liquid	will be
	β - 4cm - E		
101	a) 1.2 b) 1.4	c) 1.6	d) 1.9
2.	~ (TO CONTENT OF SECTION (1) [1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		is placed centrally over a cross mark on a with the paper. In each case the cross mark
4.	is viewed directly from above. The		
	a) (i) $0.04m$ from the flat face; (ii		
	b) (i) At the same position of the cc) (i) 0.025 <i>m</i> from the flat face; (the flat face
	d) For both (i) and (ii) 0.025 m from the natrace, (misphere
104	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	(1986-1986-1986-1987-1986-1987-1986-1986-1986-1986-1986-1986-1986-1986	is placed in a liquid of refractive index $_{a}n_{l,}$
3.		51	ractive index of the liquid an_l will be
104	a) 5/3 b) 4/3	c) √3	d) 5/4
	liquid the velocity of light found to		air is 1.5 is 2×10^8 m/s and in certain tive index of the liquid with respect to air
	is a) 0.64 b) 0.80	c) 1.20	d) 1.44
104	"Lux" is a unit of	y 35 2 (55555 €)	/
5.		EX all orders	
	a) Luminous intensity of a sourcec) Transmission coefficient of a su		ance on a surface ous efficiency of source of light
104			n. Supposing there is negligible absorption
6.	of light by aperture then illuminate	nce on slide and screen will be	in the ratio of
101	a) 100:1 b) 10 ⁴		
7.		,,,,	is surrounded by air. A light ray is incident
	at the mid-point of one end of the	rod as shown in the figure.	
	0		

a)
$$\sin^{-1}\left(\frac{1}{2}\right)$$

b)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

c)
$$\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

c)
$$\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
 d) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

104 To remove myopia (short sightedness) a lens of power $0.66\,D$ is required. The distance point of the eye is approximately

- a) 100 cm
- b) 150 cm
- c) 50 cm

104 Two immiscible liquids of refractive indices 1.5 and $\frac{4}{3}$ are filled in glass jar each of length 6 cm. A light of source S is at the bottom of the jar, the apparent depth of light source will be

- a) 12.5 cm
- b) 17 cm
- c) 12 cm
- d) 8.5 cm

105 What is the relation between refractive indices μ_1 , μ_2 , and μ_3 if the behavior of light rays is as shown in

- a) $\mu_3 < \mu_2, \mu_2 = \mu_1$
- b) $\mu_2 < \mu_1, \mu_2 = \mu_3$
- c) $\mu_3 < \mu_2 < \mu_1$
- d) $\mu_3 > \mu_2 > \mu_1$

105 For normal vision, what is distance of object from eye?

- 1.
- a) 30 cm
- b) 25 cm
- c) Infinite
- d) 40 cm

RAY OPTICS AND OPTICAL INSTRUMENTS

: ANSWER KEY:															
							-								
1)	c	2)	d	3)	d	4)		165)	a	166)	a	167)	c	168)	
5)	a	6)	C	7)	a	8)	- 1	169)	a	170)	d	171)	a	172)	
9)	a	10)	d	11)	d	12)	a	173)	d	174)	C	175)	a	176)	
13)	b	14)	c	15)	b	16)	c	177)	d	178)	b	179)	b	180)	
17)	c	18)	c	19)	C	20)		181)	b	182)	d	183)	b	184)	
21)	a	22)	d	23)	a	24)	d	185)	a	186)	b	187)	b	188)	
25)	a	26)	c	27)	a	28)	b	189)	a	190)	C	191)	C	192)	
29)	c	30)	b	31)	C	32)	d	193)	a	194)	a	195)	b	196)	
33)	d	34)	С	35)	b	36)	d	197)	a	198)	d	199)	b	200)	
37)	a	38)	d	39)	d	40)	a	201)	a	202)	C	203)	a	204)	
41)	C	42)	d	43)	C	44)	c	205)	c	206)	d	207)	d	208)	
45)	a	46)	C	47)	b	48)	d	209)	C	210)	d	211)	a	212)	
49)	a	50)	c	51)	C	52)	c	213)	C	214)	a	215)	C	216)	
53)	c	54)	b	55)	b	56)	c	217)	a	218)	d	219)	b	220)	
57)	d	58)	a	59)	b	60)	b	221)	a	222)	d	223)	b	224)	
61)	c	62)	c	63)	d	64)	d	225)	a	226)	a	227)	c	228)	
65)	a	66)	b	67)	C	68)	d	229)	a	230)	c	231)	b	232)	
69)	b	70)	a	71)	a	72)	b	233)	C	234)	a	235)	C	236)	
73)	d	74)	c	75)	a	76)	a	237)	c	238)	a	239)	d	240)	
77)	b	78)	С	79)	d	80)	d	241)	a	242)	c	243)	c	244)	
81)	d	82)	a	83)	a	84)	a	245)	c	246)	d	247)	С	248)	
85)	a	86)	b	87)	c	88)	b	249)	a	250)	a	251)	d	252)	
89)	c	90)	a	91)	c	92)	c	253)	b	254)	d	255)	d	256)	
93)	c	94)	d	95)	b	96)	ь	257)	d	258)	b	259)	c	260)	
97)	d	98)	a	99)	d	100)	c	261)	c	262)	b	263)	a	264)	
101)	b	102)	d	103)	c	104)	a	265)	С	266)	a	267)	C	268)	
105)	a	106)	С	107)	b	108)	c	269)	b	270)	С	271)	c	272)	
109)	a	110)	a	111)	a	112)		273)	d	274)	c	275)	b	276)	
113)	b	114)	b	115)	b	116)	- 1	277)	a	278)	c	279)	b	280)	
117)	c	118)	a	119)	c	120)		281)	b	282)	b	283)	c	284)	
121)	b	122)	a	123)	a	124)		285)	a	286)	b	287)	d	288)	
125)	b	126)	b	127)	b	128)		289)	a	290)	b	291)	b	292)	
129)	b	130)	b	131)	b	132)		293)	b	294)	c	295)	b	296)	
133)	a	134)	a	135)	d	136)		297)	b	298)	d	299)	b	300)	
137)	c	138)	b	139)	a	140)		301)	d	302)	d	303)	c	304)	
141)	d	142)	c	143)	a	144)	- 1	305)	a	306)	d	307)	c	308)	
145)	d	146)	a	147)	С	148)	2000	309)	С	310)	d	311)	a	312)	
149)	d	150)	d	151)	c	152)		313)	b	314)	a	315)	c	316)	
153)	d	154)	d	155)	b	156)		317)	c	318)	c	319)	a	320)	
157)	a	158)	d	159)	a	160)	- 1	321)	c	322)	c	323)	c	324)	
161)	a	162)	a	163)	b	164)		325)	a	326)	c	327)	a	328)	

329)	d	330)	b	331)	а	332)	a	529)	а	530)	b	531)	d	532)	d
333)	a	334)	С	335)	d	336)	d	533)	d	534)	a	535)	C	536)	b
337)	b	338)	d	339)	b				b	538)	b	539)	a	540)	a
341)	d	342)	b	343)	d	344)			b	542)	С	543)	d	544)	a
345)	a	346)	С	347)	b			545)	С	546)	С	547)	a	548)	d
349)	a	350)	С	351)	a				a	550)	d	551)	a	552)	b
353)	a	354)	b	355)	d	0 = 43			b	554)	d	555)	С	556)	c
357)	d	358)	b	359)	b	360)			a	558)	d	559)	a	560)	b
361)	b	362)	d	363)	d	364)	800	561)	b	562)	b	563)	d	564)	c
365)	b	366)	d	367)	b	368)			С	566)	c	567)	С	568)	b
369)	c	370)	d	371)	a				С	570)	c	571)	a	572)	d
373)	c	374)	d	375)	a			573)	d	574)	a	575)	С	576)	a
377)	c	378)	b	379)	a	380)	a		b	578)	c	579)	d	580)	d
381)	b	382)	d	383)	c	384)		581)	a	582)	d	583)	b	584)	a
385)	b	386)	b	387)	d	200	c	585)	d	586)	d	587)		588)	b
389)		390)		391)		392)		589)	d	590)	b	591)	c	592)	b
393)	a b	394)	a	395)	a	2000	C			594)	b	595)	a	596)	
397)	b	398)	b	399)	C			597)	a b	598)	d	599)	c b	600)	a b
401)		402)	a b	403)	a b	404)			b	602)	b	603)		604)	d
405)	a c	406)	c	407)	a		886	605)	b	606)	a	607)	c b	608)	b
409)	b	410)	c	411)		412)	a	609)	d	610)	b	611)		612)	
413)	b	414)		415)	a			613)	b	614)	b	615)	c d	616)	c b
417)	a	418)	c b	419)	a c			617)	d	618)	d	619)	b	620)	c
421)	a	422)	a	423)	d	424)		621)	c	622)	c	623)		624)	d
425)	d	426)	b	427)	d	428)	a		a	626)	a	627)	a	628)	b
429)	a	430)	a	431)	d	432)		629)	c	630)	a	631)	b	632)	c
433)	c	434)	a	435)	c	436)	a	(00)	d	634)	a	635)	c	636)	a
437)	a	438)	b	439)	a		c	637)	b	638)	a	639)	b	640)	d
441)	c	442)	a	443)	b			641)	d	642)	a	643)	С	644)	b
445)	c	446)	c	447)	d	448)	- 1	645)	b	646)	a	647)	a	648)	d
449)	b	450)	b	451)	a		- 1	649)	b	650)	a	651)	a	652)	d
453)	b	454)	a	455)	b			653)	c	654)	d	655)	c	656)	b
457)	c	458)	c	459)	a			657)	b	658)	b	659)	b	660)	c
461)	d	462)	b	463)	a			661)	a	662)	b	663)	a	664)	d
465)	b	466)	b	467)	a			665)	a	666)	a	667)	b	668)	a
469)	a	470)	d	471)	b	vernous and the	- 1	669)	a	670)	b	671)	С	672)	a
473)	d	474)	b	475)	a		300	673)	b	674)	c	675)	С	676)	a
477)	c	478)	a	479)	b	W. FOLES	223	677)	c	678)	c	679)	b	680)	a
481)	c	482)	b	483)	b			681)	d	682)	b	683)	С	684)	d
485)	a	486)	d	487)	d		- 1	685)	a	686)	b	687)	d	688)	a
489)	b	490)	a	491)	d			689)	a	690)	b	691)	c	692)	a
493)	d	494)	a	495)	d		122	693)	b	694)	С	695)	a	696)	a
497)	a	498)	a	499)	b	16000000		697)	a	698)	b	699)	a	700)	c
501)	a	502)	a	503)	b			701)	d	702)	c	703)	d	704)	c
505)	a	506)	С	507)	c	-	- 1	705)	b	706)	c	707)	b	708)	d
509)	d	510)	c	511)	c			709)	a	710)	c	711)	c	712)	c
513)	a	514)	b	515)	a	Same and E	- 1	713)	a	714)	b	715)	d	716)	c
517)	c	518)	b	519)	b		- 1	717)	b	718)	a	719)	a	720)	b
521)	c	522)	d	523)	a		- 1	721)	a	722)	c	723)	С	724)	b
525)	b	526)	a		b			725)	a		c	727)	d	728)	d
						1								,	

729)	d	730)	b	731)	d	732)	a	893)	d	894)	b	895)	b	896)	b
733)	a	734)	c	735)	C	736)	b	897)	d	898)	b	899)	b	900)	b
737)	C	738)	c	739)	a	740)	c	901)	c	902)	c	903)	b	904)	b
741)	a	742)	b	743)	b	744)	b	905)	c	906)	a	907)	d	908)	c
745)	b	746)	d	747)	c	748)	a	909)	b	910)	c	911)	c	912)	b
749)	C	750)	c	751)	a	752)	c	913)	b	914)	b	915)	c	916)	a
753)	b	754)	d	755)	b	756)	a	917)	d	918)	c	919)	c	920)	b
757)	d	758)	d	759)	C	760)	a	921)	C	922)	d	923)	d	924)	b
761)	c	762)	d	763)	a	764)	d	925)	b	926)	b	927)	d	928)	d
765)	b	766)	a	767)	b	768)	a	929)	d	930)	d	931)	b	932)	a
769)	a	770)	b	771)	d	772)	c	933)	a	934)	c	935)	a	936)	b
773)	b	774)	d	775)	b	776)	c	937)	b	938)	c	939)	C	940)	C
777)	b	778)	b	779)	a	780)	b	941)	d	942)	a	943)	b	944)	c
781)	b	782)	d	783)	c	784)	b	945)	a	946)	c	947)	c	948)	a
785)	b	786)	d	787)	b	788)	c	949)	d	950)	a	951)	c	952)	b
789)	c	790)	b	791)	a	792)	d	953)	a	954)	c	955)	d	956)	C
793)	b	794)	b	795)	a	796)	c	957)	c	958)	a	959)	c	960)	d
797)	a	798)	a	799)	b	800)	c	961)	a	962)	d	963)	b	964)	a
801)	b	802)	a	803)	c	804)	b	965)	a	966)	d	967)	a	968)	a
805)	b	806)	b	807)	a	808)	d	969)	d	970)	C	971)	c	972)	b
809)	b	810)	d	811)	C	812)	b	973)	a	974)	d	975)	b	976)	a
813)	a	814)	b	815)	b	816)	c	977)	a	978)	a	979)	a	980)	a
817)	a	818)	c	819)	a	820)	b	981)	d	982)	d	983)	d	984)	a
821)	b	822)	a	823)	a	824)	b	985)	C	986)	b	987)	a	988)	C
825)	b	826)	a	827)	b	828)	d	989)	c	990)	c	991)	a	992)	c
829)	a	830)	a	831)	c	832)	b	993)	C	994)	c	995)	a	996)	b
833)	d	834)	a	835)	a	836)	b	997)	c	998)	a	999)	a	1000)	a
837)	C	838)	d	839)	a	840)	b	1001)	b	1002)	a	1003)	C	1004)	a
841)	b	842)	C	843)	a	844)	d	1005)	C	1006)	a	1007)	b	1008)	a
845)	a	846)	b	847)	a	848)	a	1009)	d	1010)	b	1011)	a	1012)	c
849)	C	850)	d	851)	b	852)	b	1013)	d	1014)	b	1015)	b	1016)	b
853)	a	854)	a	855)	C	856)	d	1017)	d	1018)	d	1019)	c	1020)	C
857)	b	858)	a	859)	b	860)	c	1021)	b	1022)	C	1023)	a	1024)	d
861)	a	862)	a	863)	a	864)	b	1025)	b	1026)	a	1027)	C	1028)	d
865)	b	866)	c	867)	C	868)	c	1029)	b	1030)		1031)	a	1032)	C
869)	b	870)	a	871)	d	872)	d	1033)	d	1034)	d	1035)	C	1036)	b
873)	c	874)	d	875)	C	876)	a	1037)	a	1038)	a	1039)	a	1040)	c
877)	c	878)	b	879)	a	880)		1041)		1042)	b	1043)	a	1044)	c
881)	d	882)	b	883)	d	884)	d	1045)	b	1046)	b	1047)	d	1048)	b
885)	c	886)	c	887)	b	888)	b	1049)	a	1050)	a	1051)	b		
889)	a	890)	b	891)	a	892)	c								
							1								

RAY OPTICS AND OPTICAL INSTRUMENTS

: HINTS AND SOLUTIONS :

- 1 **(c)**Magnification will be done by compound microscope only when $f_0 < f_e$
- 2 **(d)** $m \simeq \frac{LD}{f_0 f_e} \Rightarrow m = \frac{10 \times 25}{0.5 \times 1} = 500$
- We know that $\frac{\delta_v \delta_r}{\delta_{mean}} = \omega$ \Rightarrow Angular dispersion $= \delta_v - \delta_r = \theta = \omega \delta_{mean}$
- 4 **(b)** $\mu \propto \frac{1}{\lambda}$
- Condition of no emergence is

 A > C

 As angle of prism is greater th

As angle of prism is greater than critical angle for blue and green coloured rays, total internal reflection will take place at second surface and hence the arrangement will separate red colour from blue and green.

6 **(c)** $f_o = 50 \text{ cm}, f_e = 5 \text{ cm}, D = 25 \text{ cm} \text{ and } u_o = 200 \text{ cm}.$

Separation between the objective and the eye lens is

$$L = \frac{u_o f_o}{(u_o - f_o)} + \frac{f_e D}{(f_e + D)}$$
$$= \frac{200 \times 50}{(200 - 50)} + \frac{5 \times 25}{(5 + 25)} = 71 \text{ cm}$$

- 7 **(a)** $m = -\frac{f_o}{f_e}$
- 8 **(d)** $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ $\frac{1}{f x_1} + \frac{1}{f x_2} = \frac{1}{f}$ $0r \frac{f^{-x_2 + f x_1}}{(f x_1)(f x_2)} = \frac{1}{f}$ $0r f^2 fx_2 fx_1 + x_1x_2 = 2f^2 f(x_1 + x_2)$ $0r f^2 = x_1x_2 \text{ or } f = \sqrt{x_1x_2}$ This is Newton's mirror formula

- 9 **(a)**Number of images $n = \frac{360^{\circ}}{\theta} 1$ Where, $\theta = \text{angle between mirrors}$ Thus, $\theta = 60^{\circ}$ So, number of images $n = \frac{360^{\circ}}{60^{\circ}} 1 = 5$
 - As $\mu_2 > \mu_1$, the upper half of the lens will become diverging

As $\mu_1 > \mu_3$, the lower half of the lens will become converging

- 11 **(d)**Focal length of lens in given by $\frac{1}{f_w} = (\mu_g 1) \left(\frac{1}{R_1} \frac{1}{R_2} \right)$ $= \left(\frac{1.6}{1.63} 1 \right) \left(\frac{1}{15} + \frac{1}{15} \right)$ $= -\frac{0.03 \times 2}{1.63 \times 15} = \frac{-6}{1.63 \times 15}$ so, $f_w = -\frac{815}{2}$
- 12 (a) As refractive index for z > 0 and z ≤ 0 is different X - Y plane should be boundary between two media Angle of incidence,

$$\cos i = \left| \frac{A_z}{\sqrt{A_x^2 + A_y^2 + A_z^2}} \right| = \frac{1}{2}$$

 $i = 60^{\circ}$ From Snell's law

= -407.5 cm

$$\frac{\sin i}{\sin r} = \frac{\sqrt{3}}{2}$$
$$\Rightarrow r = 45^{\circ}$$

For first case : $\frac{1}{f} = \frac{1}{v} - \frac{1}{\infty} \Rightarrow f = v$ For second case $\frac{1}{f} = \frac{1}{(f+5)} - \frac{1}{-(f+20)} \Rightarrow f = 10 \ cm$ Alternative sol. $-f^2 = x_1 x_2 \Rightarrow f = 10 \ cm$ 14 (c)

In liquids converging ability (power) of convex lens decreases

15 **(b)**

From Hugen's principle, if the incident wavefront be parallel to the interface of the two media (i = 0), then the refracted wavefront will also be parallel to the interface (r = 0).

In other words, if light rays fall normally on the interface, then on passing to the second medium they will not deviate from their original path.

16 (c)

For equal fogging
$$l_2 \times t_2 = l_2 \times t_2$$

$$\Rightarrow \frac{L_2}{r_2^2} \times t_2 = \frac{L_1}{r_1^2} \times t_1 \Rightarrow \frac{16}{4} \times t_2 = \frac{20}{1} \times 10$$

$$\Rightarrow t_2 = 50s$$

17 (c)

The refractive index of glass with respect to water

$$_{w}\mu_{g} = \frac{a\mu_{g}}{a\mu_{w}}$$

Given, $_a\mu_g = 1.5$, $_a\mu_w = 1.33$

$$_{\rm w}\mu_{\rm g} = \frac{1.5}{1.33} = 1.80$$

Also
$$_{w}\mu_{d} = \frac{_{a}\mu_{d}}{_{a}\mu_{w}}$$

Given, $_a\mu_d = 2.4$, $_a\mu_w = 1.33$

$$\therefore \ _{w}\mu_{d} = \frac{2.4}{1.33} = 1.6$$

18 (c)

$$\frac{f_{w_{xy}}}{f_{aa}} = \frac{\mu - 1}{\frac{\mu_w}{\mu_a} - 1}$$

$$\frac{f_{w_{xy}}}{10} = \frac{1.5 - 1}{1/8}$$

$$f_{w_{xy}} = \frac{0.5 - 10}{1/8} = 40 \text{ cm}$$

Relative velocity of image w.r.t man

$$= 15 - (-15) = 30 \, m/s$$

21 (a)

For greater aperture of lens light passing through lens is more and so intensity of image increases

22 (d)

From the figure for real image formation $x + x' + 2f \ge 4f \Rightarrow x + x' \ge 2f$

$$f = \frac{1}{P} = \frac{1}{5}$$
m = 20 cm

Now,
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{20}$$

Now,
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{20}$$

Or $\frac{1}{v} - \frac{1}{-25} = \frac{1}{20}$ or $\frac{1}{v} = \frac{1}{20} - \frac{1}{25}$
Or $\frac{1}{v} = \frac{5-4}{100}$ or $\frac{1}{v} = \frac{1}{100}$

Or
$$\frac{1}{v} = \frac{5-4}{100}$$
 or $\frac{1}{v} = \frac{1}{100}$

$$Or d = 100 cm = 1 m$$

24 (d)

For concave mirror $m = \frac{f}{f-u}$ For real image $m = -\frac{f}{(u-f)} = -\frac{f}{x}$ = $-\frac{f}{\text{(Distance of object from focus)}} \Rightarrow m \propto \frac{1}{x}$

25

Using equation, the total apparent shift is

$$s = h_1 \left(1 - \frac{1}{\mu_1} \right) + h_2 \left(1 - \frac{1}{\mu_2} \right)$$
On $s = A \left(1 - \frac{1}{\mu_2} \right) + A \left(1 - \frac{1}{\mu_2} \right)$

Or
$$s = 4\left(1 - \frac{1}{4/3}\right) + 6\left(1 - \frac{1}{3/2}\right)$$

$$= 3.0 \text{ cm}$$

Thus,
$$h = h_1 + h_2 - s = 4 + 6 - 3$$

= 7.0 cm

26 (c)

By formula $\delta = (\mu - 1)A \Rightarrow 34 = (\mu - 1)A$ and in the second position $\delta' = (\mu - 1) \frac{A}{2}$

$$\therefore \frac{34}{\delta'} = \frac{(\mu - 1)A}{(\mu - 1)\frac{A}{2}} \text{ or } \delta' = \frac{34}{2} = 17^{\circ}$$

27

In short sightedness, the focal length of eye lens decreases and so the power of eye lens increases

28

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$\cot\frac{A}{2} = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\frac{A}{2}}$$

Or
$$\frac{\cos\frac{A}{2}}{\sin\frac{A}{2}} = \frac{\sin(\frac{A+\delta_m}{2})}{\sin\frac{A}{2}}$$

Or
$$\sin\left(\frac{\pi}{2} - \frac{A}{2}\right) = \sin\left(\frac{A + \delta_m}{2}\right)$$

Or
$$\frac{\pi}{2} - \frac{A}{2} = \frac{A}{2} + \frac{\delta_m}{2}$$

Or
$$\frac{\pi}{2} - A = \frac{\delta_m}{2}$$

$$\frac{\pi - 2A}{2} = \frac{\delta_m}{2}$$

$$\therefore \delta_m = 180^\circ - 2A$$

Focal length of effective lens

$$\frac{1}{F} = \frac{2}{f_l} + \frac{1}{f_m} = \frac{2}{f_l} + \frac{1}{\infty} \Rightarrow F = \frac{f_l}{2}$$

$$\frac{\sin \theta_c}{\sin 90} = \frac{1}{\mu}$$
$$\sin \theta_c = \frac{1}{\mu}$$

$$\Rightarrow \sin \theta_c = \frac{1}{n}$$

$$\Rightarrow \frac{R}{\sqrt{R^2 + D^2}} = \frac{1}{n} \Rightarrow \frac{R^2 + D^2}{R^2} = \frac{n^2}{1}$$

$$\Rightarrow 1 + \frac{D^2}{R^2} = n^2 - 1 \Rightarrow R^2 = \frac{D^2}{n^2 - 1}$$

$$R = \frac{D}{\sqrt{n^2 - 1}}$$

If the bulb is not at seen through the surface R must be greater than

$$\frac{D}{\sqrt{n^2 - 1}} \quad R > \frac{D}{\sqrt{n^2 - 1}}$$

31 (c)

$$\Delta x = \left(1 - \frac{1}{\mu}\right)t$$
$$= \left(1 - \frac{1}{15}\right) \times 6 = 2 cm$$

Distance of object from mirror = 42 cm

32 (d)

An eye sees distant objects with full relaxation So $\frac{1}{2.5 \times 10^{-2}} - \frac{1}{-\infty} = \frac{1}{f}$ or $P = \frac{1}{f} = \frac{1}{2.5 \times 10^{-2}} = 40D$

An eye sees an object at 25 cm with strain

So
$$\frac{1}{2.5 \times 10^{-2}} - \frac{1}{-25 \times 10^{-2}} = \frac{1}{f}$$

or
$$P = \frac{1}{f} = 40 + 4 = 44D$$

33 (d)

$$m \propto \frac{1}{f} \propto F$$

 $m \propto \frac{1}{f} \propto P$

Separation =
$$f_0 + \frac{f_e D}{f_e + D}$$

= $80 + \frac{5 \times 25}{5 + 25} = 80 + \frac{125}{30}$

$$= 84.16 \text{ cm} = 84.2 \text{ cm}$$

35 **(b)**

 $v \propto \frac{1}{\mu}$, μ is smaller for air than water, glass and diamond

36 (d)

$$f = \frac{R}{2} = 20 \text{ cm}, m = 2.$$
 For real image; $m = -2$

By using
$$m = \frac{f}{f - u}$$
, $-2 = \frac{-20}{-20 - u} \Rightarrow u = -30 cm$

For virtual image; m = +2

So,
$$+2 = \frac{-20}{-20-u} \Rightarrow u = -10 \text{ cm}$$

37 (a)

According to new cartesian sign convention, Object distance u = -40 cm

Image distance v = ?

Focal length f = -20 cm

: From mirror formula

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

Or
$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

Or $\frac{1}{v} = \frac{1}{-20} - \frac{1}{(-40)} = -\frac{1}{40}$

Or
$$v = -40 \text{ cm}$$

 \div The image is on the same side of the object.

Now, magnification
$$m = \frac{v}{u} = -\frac{(-40)}{(-20)} = -2$$

Hence, the image is real, inverted and of same sie.

38 (d)

> According to the following figure distance of image I from camera

$$=\sqrt{(6)^2+(1.5)^2}=6.18 m$$

Refraction at air-oil point $\mu_{oil} = \frac{\sin i}{\sin r}$

$$\therefore \sin r_1 = \frac{\sin 40}{1.45} = 0.443$$

Refraction at oil-water point $_{oil}\mu_{water} = \frac{\sin r_1}{\sin r}$

$$\therefore \frac{1.33}{1.45} = \frac{0.443}{\sin r} \text{ or } \sin r = \frac{0.443 \times 1.45}{1.33} \Rightarrow r$$

$$= 28.9^{\circ}$$

40 (a)

Rock salt prism is used to see infrared radiations

$$\frac{\beta}{\alpha} = \frac{f_o}{f_e} \Rightarrow \frac{\beta}{0.5^\circ} = \frac{100}{2} \Rightarrow \beta = 25^\circ$$

Clearly, the distance of image from observer is 40

44 (c)

$$\frac{x}{r} = \frac{1.22 \,\lambda}{d} \Rightarrow x = \frac{1.22 \,\lambda r}{d}$$
$$= \frac{1.22 \times 500 \times 10^{-9} \times 400 \times 10^{3}}{5 \times 10^{-3}} = 50 \,m$$

45 (a)

The ray of light is refracted at the plane surface. However, since the ray is travelling from a denser to a rarer medium, for an angle of incidence (i) greater than the critical angle (c) the ray will be totally internally reflected

For i < c; deviation $\delta = r - i$ with $\frac{1}{\mu} = \frac{\sin i}{\sin r}$

Hence $\delta = \sin^{-1}(\mu \sin i) - i$

This is a non-linear relation. The maximum value of δ is $\delta_1 = \frac{\pi}{2} - C$

Where i = c and $\mu = \frac{1}{\sin c}$

For i > c, deviation $\delta = \pi - 2i$

 δ decreases linearly with i

$$\delta_2 = \pi - 2 c = 2\delta_1$$

47 **(b)**

From graph, slope =
$$\tan\left(\frac{2\pi}{10}\right) = \frac{\sin r}{\sin i}$$

Also $u_1 \mu_2 = \frac{\mu_2}{\mu_1} = \frac{\sin i}{\sin r} = \frac{1}{\tan\left(\frac{2\pi}{10}\right)} = \frac{4}{3} \Rightarrow \mu_2 > \mu_1$

It means that medium 2 is denser medium. So total internal reflection cannot occur

48 (d)

$$0 = 2 \text{ mm}, u = -20 \text{ cm}$$

$$f = \frac{R}{2} = \frac{40}{2} = 20 \text{ cm}$$

From mirror formula,

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\frac{1}{20} = \frac{1}{v} + \frac{1}{-20}$$

$$\frac{1}{v} = \frac{1}{20} + \frac{1}{20}$$

$$\Rightarrow v = 10 \text{ cm}$$

$$\therefore \frac{I}{O} = \frac{v}{u}$$

$$\frac{I}{2} = \frac{10}{20}$$

$$\Rightarrow I = 1 \text{ mm}$$

Height of image = 1 mm

49 (a)

$$m = 1 + \frac{D}{f} \Rightarrow 6 = 1 + \frac{25}{f} \Rightarrow f = 5 \text{ cm} = 0.05 \text{ m}$$

50

$$\phi = 4\pi L = 4 \times 3.14 \times 100 = 1256 lumen$$

51 (c)

Considering pole at P, we have

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

$$\Rightarrow \frac{1}{\infty} - \frac{u}{(-2R)} = \frac{1 - \mu}{(-R)}$$
$$\Rightarrow \frac{\mu}{2R} = \frac{1 - \mu}{(-R)} \Rightarrow \mu = 2$$

52 (c)

Dispersive power,
$$\omega = \frac{\delta_B - \delta_R}{\delta}$$
 for 1st prism, $\omega_1 = \frac{\delta_B - \delta_R}{\delta} = \frac{12^\circ - 8^\circ}{10^\circ} = \frac{2}{5}$

Where
$$\delta = \frac{\delta_B + \delta_R}{2}$$

Similarly for second prism,

$$\omega_2 = \frac{14^{\circ} - 10^{\circ}}{12} = \frac{1}{3}$$
$$\therefore \frac{\omega_1}{\omega_2} = \frac{2}{5} \times \frac{3}{1} = \frac{6}{5}$$

53 (c)

According to the problem, combination of \mathcal{L}_1 and \mathcal{L}_2 act a simple glass plate. Hence according to formula

$$\begin{split} &\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} \\ &\frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} = 0 \Rightarrow \frac{1}{f_1} + \frac{1}{f_2} = \frac{d}{f_1 f_2} \\ &\Rightarrow \frac{1}{30} - \frac{1}{10} = \frac{d}{30 \times -10} \Rightarrow \frac{-20}{30 \times 10} = -\frac{d}{30 \times 10} \\ &\Rightarrow d = 20 \ cm \end{split}$$

54 **(b**)

$$v = \frac{c}{\mu} = \frac{3 \times 10^8}{1.33} = 2.25 \times 10^8 m/s$$

55 (b)

For different colours μ change so deviation of different colour's also different

56 (c)

The image is erect and diminished. So, the mirror in necessarily convex

57 (d)

When sunlight is incident on a prism, it produces spectrum due to refraction of light. Refraction is the change in direction of a wave due to a chance in its velocity. Glass has a higher refractive index than air and the different frequencies of light travel at different speeds (dispersion), causing them to be refracted at different angles. The different frequencies correspond to different colours observed.

58 (a)

By using
$$\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0 \Rightarrow \frac{0.02}{f_1} + \frac{0.04}{40} = 0$$

 $f_1 = -20 \text{ cm}$

60 (b)

For total internal reflection to take place

 $i > \theta c$

Taking sine on both sides, we get

 $\sin i > \sin \theta c$

[as angle i at both face will be 45°]

$$\Rightarrow \frac{1}{\sqrt{2}} > \frac{1}{\mu}$$
$$\Rightarrow \mu > \sqrt{2}$$

61 (c

$$\frac{I}{r_1^2}t_1 = \frac{I}{r_2^2}t_2 \Rightarrow t_2 = \frac{r_2^2}{r_1^2}t_1 = \left(\frac{40}{25}\right)^2 s = \left(\frac{8}{5}\right)^2 s$$
$$= \frac{64}{5}s = 12.8 s$$

62 (c)

Here, angle of prism $A = 60^{\circ}$

Refractive index, $\mu = \sqrt{3}$

At the minimum deviation δ_m , the refracted ray inside the prism becomes parallel to its base

$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$\sqrt{3} = \frac{\sin\left(\frac{60^\circ + \delta_m}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)} \Rightarrow \sqrt{3}\sin 30^\circ = \sin\left(\frac{60^\circ + \delta_m}{2}\right)$$

$$\frac{\sqrt{3}}{2} = \sin\left(\frac{60^{\circ} + \delta_m}{2}\right) \Rightarrow \sin 60^{\circ} = \sin\left(\frac{60^{\circ} + \delta_m}{2}\right)$$
$$60^{\circ} = \frac{60^{\circ} + \delta_m}{2} \Rightarrow \delta_m = 60^{\circ}$$

As $\delta_m = 2i - A$, where *i* is the angle of incidence Hence $i = \theta$

$$\therefore \theta = \left(\frac{\delta_m + A}{2}\right) = \frac{60^\circ + 60^\circ}{2} = 60^\circ$$

63 (d)

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

For equilateral prism, $\angle A = 60^{\circ}$

$$\mu = \frac{\sin\left(\frac{60^{\circ} + 60^{\circ}}{2}\right)}{\sin\frac{60^{\circ}}{2}} = \frac{\sin 60^{\circ}}{\sin 30^{\circ}} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} = 1.73$$

64 **(d**

$$u = -20 \text{ cm}, f = 20 \text{ cm}$$

From mirror formula,

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\frac{1}{20} = \frac{1}{v} + \frac{1}{-20}$$

$$\frac{1}{v} = \frac{1}{20} + \frac{1}{20}$$

$$\frac{1}{v} = \frac{2}{20} \Rightarrow v = 10 \text{ cm}$$

Because in dispersion of white light, the rays of different colours are not parallel to each other. Also deviation takes place in same direction

67 **(c)**

$$d = \frac{D \times f}{r_1} = \frac{1.39 \times 10^9 \times 10 \times 10^{-2}}{1.5 \times 10^{11}}$$

$$= 9.26 \times 10^{-4} m$$

68 **(d)**

$$f = \frac{R}{(\mu - 1)} = \frac{15}{(1.6 - 1)} = 25 \text{ cm}$$

$$\therefore P = \frac{100}{f} = \frac{100}{25} = +4D$$

In myopia, $u = \infty$, v = d = distance of far point By $\frac{1}{f} = \frac{1}{v} - \frac{1}{v}$, we get f = -d

Since f is negative, hence the lens used is concave

71 (a)
$$A = r + 0 \Rightarrow r = 30^{\circ}$$
From Snell's law at surface AB
$$\mu = \frac{\sin i}{\sin r}$$

or
$$\mu = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

$$m = m_o \times m_e \Rightarrow 100 = 5 \times m_e \Rightarrow m_e = 20$$

Because to form the complete image only two rays are to be passed through the lens and moreover, since the total amount of light released by the object is not passing through the lens, therefore image is faint (intensity in decreased)

74 **(c)**
Given
$$M_0 = 25 M_e = 6$$
 \therefore magnification of this microscope is
 $M = M_0 \times M_e = 25 \times 6 = 150$

75 **(a)**

$$L_D = v_o + u_e \text{ and for objective lens } \frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$$
Putting the values with proper sign convention
$$\frac{1}{+2.5} = \frac{1}{v_o} - \frac{1}{(-3.75)} \Rightarrow v_o = 7.5 \text{ cm}$$

For eye lens
$$\frac{1}{f_e} = \frac{1}{v_e} - \frac{1}{u_e}$$

$$\Rightarrow \frac{1}{+5} = \frac{1}{(-25)} - \frac{1}{u_e} \Rightarrow u_e = -4.16 cm$$

$$\Rightarrow |u_e| = 4.16 cm$$
Hence $L_D = 7.5 + 4.16 = 11.67 cm$

76 **(a)** Resolving power = $\frac{a}{1.22\lambda}$

77 **(b)**Note that image formation by a mirror does not depend on the medium. As *P* is at a height *h* above the mirror, image of *P* will be at a depth *h* below the mirror

If d is depth of liquid in the tank, apparent depth of P,

$$x_1 = \frac{d-h}{\mu}$$

.. Apparent distance between *P* and its image $= x_2 - x_1 = \frac{d+h}{\mu} - \frac{d-h}{\mu} = \frac{2h}{\mu}$

78 **(c)**
$$A = r + 0 \Rightarrow r = 30^{\circ}$$

From Snell's law at surface AB

$$\mu = \frac{\sin i}{\sin r}$$

$$\Rightarrow \sqrt{2} = \frac{\sin i}{\sin 30^{\circ}} \Rightarrow i = 45^{\circ}$$

(d) From Snell's law, refractive index (μ) is given by $\mu = \frac{\sin i}{m} \qquad ... (i)$

Where i is angle of incidence and r of refraction.

Also,
$$\mu = \frac{v_1}{v_2}$$
 ... (ii)

Equating Eqs, (i) and (ii), we get

$$\mu = \frac{\sin i}{\sin r} = \frac{v_1}{v_2}$$

$$\Rightarrow \sin r = \frac{v_2}{v_1} \cdot \sin i$$

Given,
$$v_2 = 2u$$
, $v_1 = u$, $i = 30^\circ$, $\sin 30^\circ = \frac{1}{2}$
 $\therefore \sin r = 2 \times \frac{1}{2} = 1$
 $\Rightarrow r = 90^\circ$

82 (a)

79

Focal length for violet is minimum

Here optical distance between fish and the bird is $s = y' + \mu y$

Differentiating w.r.t. we get $\frac{ds}{dt} = \frac{dy'}{dt} + \frac{\mu dy}{dt}$

$$\Rightarrow 9 = 3 + \frac{4}{3} \frac{dy}{dt} \Rightarrow \frac{dy}{dt} = 4.5 \text{ m/s}$$

84 (a)

$$D = (\mu - 1)A$$

For blue light μ is greater than that for red light, So $D_2 > D_1$

85 (a)

Given that,
$$a\mu_g = \frac{3}{2}$$
 and $a\mu_q = \frac{12}{5}$

So, we get

$$\therefore g\mu_q = \frac{\mu_q}{\mu_a} \cdot \frac{\mu_a}{\mu_g} = \frac{\mu_q}{\mu_g}$$
$$= \frac{12}{5} \times \frac{2}{3} = \frac{8}{5}$$

86 **(b)**

Distance of object from the pole of convex mirror u = -f.

Distance of image from the pole of convex mirror v = ?

The Focal length

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\text{Or } \frac{1}{f} = \frac{1}{-f} + \frac{1}{v}$$

Or
$$\frac{1}{v} = \frac{1}{f} + \frac{1}{f}$$

Or
$$\frac{1}{v} = \frac{2}{f} \Rightarrow v = \frac{f}{2}$$

87 (c)

For correcting myopia, concave lens is used and

u = wants to see = -50 cm

$$v = \text{can see} = -25 \text{ cm}$$

From
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{f} = \frac{1}{-25} - \frac{1}{(-50)} \Rightarrow f = -50 \text{ cm}$$

So power
$$P = \frac{100}{f} = \frac{100}{-50} = -2D$$

88 (b)

$$\lambda_g = \frac{\lambda_a}{\mu_a} = \frac{5890}{1.6} = 3681 \,\text{Å}$$

Incident ray and finally reflected ray are parallel to each other means $\delta = 180^{\circ}$

From
$$\delta = 360^{\circ} - 2\theta$$

$$\Rightarrow$$
 180° = 360° - 20

$$\Rightarrow$$
 $\theta = 90^{\circ}$

90 (a)

When lenses are in contact

$$P = \frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} \Rightarrow 10 = \frac{1}{f_1} + \frac{1}{f_2}$$
 ... (i)

$$P' = \frac{1}{F'} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} \Rightarrow 6$$
$$= \frac{1}{f_1} + \frac{1}{f_2} - \frac{0.25}{f_1 f_2} \dots (ii)$$

From equation (i) and (ii) $f_1f_2 = \frac{1}{16}$

From equation (i) and (iii) $f_1 + f_2 = \frac{5}{9}$...(iv)

Also
$$(f_1 - f_2)^2 = (f_2 + f_2)^2 - 4f_1f_2$$

Hence
$$(f_1 - f_2)^2 = \left(\frac{5}{8}\right)^2 - 4 \times \frac{1}{16} = \frac{9}{64}$$

$$\Rightarrow f_1 - f_2 = \frac{3}{8} \qquad \dots (v)$$

On solving (iv) and (v) $f_1 = 0.5 m$ and $f_2 =$ 0.125 m

91 (c)

In case of convex lens if rays are coming from the focus, then the emergent rays after refraction are parallel to principal axis

92 (c)

At P, u = v which happened only when u = 2fAt another point Q on the graph (above P)

Given
$$\delta_m = A$$
, as $\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$

$$\Rightarrow \mu = \frac{\sin\left(\frac{A+A}{2}\right)}{\sin\left(\frac{A}{2}\right)} = 2\cos\frac{A}{2} \Rightarrow A = 2\cos^{-1}\left(\frac{\mu}{2}\right)$$

$$\mu = \frac{\frac{2}{3}h}{\frac{1}{2}h} = \frac{4}{3}$$

h being depth of beaker.

95 (b)

A water drop in air behaves as converging lens

$$\phi = 4\pi L = 200 \pi lumen$$

So
$$I = \frac{\phi}{100 A} = \frac{200 \pi}{100 \times \pi r^2} = \frac{2}{(0.1)^2} = 200 lux$$

Light from lamp or electric heater gives continuous spectrum

98 (a)

Dispersion is caused due to refraction as μ depends on λ

99 (d)

Here
$$\frac{1}{F} = \frac{2}{f} + \frac{1}{f_m}$$

Plano-convex lens silvered on plane side has $f_m =$

$$\therefore \frac{1}{F} = \frac{2}{f} + \frac{1}{\infty} \Rightarrow \frac{1}{30} = \frac{2}{f} \Rightarrow f = 60 \ cm$$

Plano-convex lens silvered on convex side has

$$f_m = \frac{R}{2}$$

$$\therefore \frac{1}{F} = \frac{2}{f} + \frac{2}{R} \Rightarrow \frac{1}{10} = \frac{2}{60} + \frac{2}{R} \Rightarrow R = 30 \ cm$$

Now using $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R}\right)$, we get $\mu = 1.5$

100 (c)

Ray after reflection from three mutually perpendicular mirrors becomes anti-parallel

$$\frac{\delta_a}{\delta_\omega} = \frac{\binom{a\mu_g - 1}}{\binom{\omega\mu_g - 1}} = \frac{\binom{\frac{3}{2} - 1}}{\binom{\frac{3}{2} - 1}{\frac{4}{3} - 1}} = 4 \Rightarrow \delta_\omega = \frac{\delta_a}{4}$$

102 (d)

Distance =
$$v \times t = \frac{c}{\mu} \times t = \frac{3 \times 10^8}{1.5} \times 10^{-9}$$

= 0.2 m = 20 cm

103 (c)

$$\frac{1}{f} = \frac{1}{12} + \frac{1}{240} = \frac{20+1}{240} \Rightarrow f = \frac{240}{21}m$$

Shift =
$$1\left(1 - \frac{2}{3}\right) = \frac{1}{3}$$

Now
$$v' = 12 - \frac{1}{3} = \frac{35}{3} cm$$

$$\therefore \frac{21}{240} = \frac{3}{35} - \frac{1}{u}$$

$$\therefore \frac{21}{240} = \frac{3}{35} - \frac{1}{u}$$

$$\Rightarrow \frac{1}{u} = \frac{3}{35} - \frac{21}{240} = \frac{1}{5} \left(\frac{3}{7} - \frac{21}{48} \right)$$
5 | 144 - 147|

$$\frac{5}{u} = \left| \frac{144 - 147}{48 \times 7} \right|$$

$$u = 560cm = 5.6m$$

Hence shifting of object = 5.6 - 2.4 = 3.2m

 $f_{\text{water}} = 4 \times f_{\text{air}}$, air lens is made up of glass

105 (a)

$$v \propto \frac{1}{\mu}, \mu_{\text{rarer}} < \mu_{\text{denser}}$$

107 (b)

Given, refractive index of prism $\mu = 1.732$ Let the angle of prism is *A*.

The angle of minimum deviation = The angel of prism

$$\delta_m = A$$

The refractive index of prism

$$\mu = \frac{\sin\left[\frac{A+\delta_m}{2}\right]}{\sin\frac{A}{2}}$$

Or
$$\mu = \frac{\sin\left[\frac{A+A}{2}\right]}{\sin\frac{A}{2}}$$

Or
$$1.732 = \frac{\sin A}{\sin \frac{A}{2}}$$

$$\operatorname{Or} \sqrt{3} = \frac{2\sin\frac{A}{2}\cdot\cos\frac{A}{2}}{\sin\frac{A}{2}}$$

Or
$$A = 60^{\circ}$$

108 (c)

As shown in Figure

In this case refraction of the rays starting from t_0 takes place from a plane surface. So, we can use

$$d_{\mathrm{app}} = \frac{d_{\mathrm{actual}}}{\mu}$$

Or
$$3 = \frac{4}{\mu}$$

Or
$$\mu = \frac{4}{3}$$

As shown in Fig (b). In this case refraction takes place from a spherical surface. Hence, applying

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

$$\frac{1}{(-25/8)} - \frac{4/3}{-4} = \frac{1 - 4/3}{-R}$$

Or
$$\frac{1}{3R} = \frac{1}{3} - \frac{8}{25} = \frac{1}{75}$$

$$\therefore R = 25 \text{ cm}$$

Now, to find the focal length we will use the lens maker formula

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
$$= \left(\frac{4}{3} - 1 \right) \left(\frac{1}{\infty} - \frac{1}{-25} \right) = \frac{1}{75}$$
$$\therefore f = 75 \text{ cm}$$

109 (a)

By formula $m = \frac{f_0}{f_0}$

110 (a)

$$\frac{1}{5u} - \left(\frac{1}{-u}\right) = \frac{1}{30}$$

$$\frac{1}{5u} + \frac{1}{u} = \frac{1}{30}$$

$$\frac{5+1}{5u} = \frac{1}{30}$$

$$u = 36 \text{ cm}$$

111 (a)

$$\frac{I_1}{I_2} = \frac{r_1^2}{r_2^2} = \left(\frac{25}{50}\right)^2 = \frac{1}{4}$$

112 (c

$$m_1 = \frac{A_1}{O}$$
 and $m_2 = \frac{A_2}{O} \Rightarrow m_1 m_2 = \frac{A_1 A_2}{O^2}$

Also it can be proved that $m_1 m_2 = 1$

So
$$O = \sqrt{A_1 A_2}$$

113 (b)

$$v \propto \lambda \Rightarrow \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$
$$\therefore v_2 = \frac{v_1}{\lambda_1} \times \lambda_2 = 3 \times 10^8 \times \frac{4500}{6000}$$
$$= 2.25 \times 10^8 m/s$$

114 (b)

Focal length = - (Defected far point)

116 (c)

Real depth = 1 m

Apparent depth = 1 - 0.1 = 0.9 m

Refractive index $\mu = \frac{Real\ depth}{Apparent\ depth} = \frac{1}{0.9} = \frac{10}{9}$

117 **(c**)

$$E_{1} = \frac{I}{r^{2}}, E_{2} = \frac{I}{r^{2}} + \frac{I}{9r^{2}}$$

$$\therefore \frac{E_{1}}{E_{2}} = \frac{I}{r^{2}} \times \frac{9r^{2}}{10I}$$

$$\text{Or } \frac{E_{2}}{E} = \frac{10}{9}$$

As is clear from figure the distance of image with reference to observer reduces by 10 cm in one second

119 (c)

$$d = \frac{2f}{3}$$
or $f = \frac{3d}{2} = \frac{3 \times 12}{2} = 18 \text{ cm}$

Equivalent focal length is

$$f' = \frac{f_1 f_2}{f_1 + f_2} + \frac{f}{4} = \frac{18 \times 18}{18 + 18} + \frac{18}{4}$$
$$= 9 + 4.5 = 13.5 \text{ cm}$$

121 (b)

Here,
$$P_1 + P_2 = 2D$$
 and $P_1 = 5D$
So $P_2 = -3D$

For an achromatic combination

$$\omega_1 P_1 + \omega_2 P_2 = 0$$

or
$$\frac{\omega_1}{\omega_2} = \left(-\frac{P_2}{P_1}\right) = -\frac{(-3)}{2} = \frac{3}{5}$$

122 (a)

In election microscope, electron beam $(\lambda = \text{Å})$ is used so its resolving power is approx. 5000 times more than that of ordinary microscope $(\lambda = 5000\text{Å})$

123 (a)

$$\mu_1 = 1.20 + \frac{0.8 \times 10^{-14}}{(400 \times 10^{-9})^2}$$

$$\mathrm{Or} \ \mu_1 = 1.20 + \tfrac{0.8 \times 10^{-14}}{400 \times 400 \times 10^{-18}}$$

Or
$$\mu_1 = 1.20 + \frac{0.8}{16}$$

Or
$$\mu_1 = 1.20 + 0.05$$

Or
$$\mu_1 = 1.25$$

Or
$$\sin i_c = \frac{1}{1.25} = 0.8$$

Or
$$i_c = 53.13^{\circ}$$

Again,
$$\mu_2 = 1.20 + \frac{0.8 \times 10^{-14}}{(500 \times 10^{-9})^2}$$

Or
$$\mu_2 = 1.20 + \frac{0.8}{25}$$
 or $\mu_2 = 1.20 + 0.32$

Or
$$\mu_2 = 1.232$$

Or
$$\sin i_c = \frac{1}{1.232} = 0.81$$

Or
$$i_c = \sin^{-1} 0.81$$

$$= 54.26^{\circ}$$

Now, $\sin \theta = 0.8$ or $\theta = 53.13^{\circ}$

This angle is clearly greater than critical angle corresponding to wavelength 400 nm. So, light of 400 nm wavelength under goes total internal reflection

124 (d)

$$\omega/f = -\omega/f' \Rightarrow f' = -2f$$

125 (b)

From the figure,

Using property of plane mirror Image distance = Object distance $f - 10 = 10 \Rightarrow f = 20 cm$

Applying the lens maker's formula

$$\frac{1}{f} = P = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

We know that the greater positive power is for that material for which $\frac{1}{R_1} - \frac{1}{R_2}$ is maximum and positive. For this condition R_1 and R_2 should be small as possible but still it must be positive, therefore we must select the combination which has less radius of curvature for convex lens. Hence, option (b) is correct

128 **(b)**

$$\omega = \frac{f_R - f_V}{f_y} = \frac{f_R - f_V}{\sqrt{f_V f_R}}$$

Putting value of f_V and f_R we get $\omega = 0.0325$

129 (b)

Focal length of mirror $f = \frac{R}{2} = \frac{10}{2} = 5cm$

For part PQ: transverse magnification

length of image
$$L_1 = \left(\frac{f}{f-u}\right) \times L_0$$

$$= \left(\frac{-5}{-5 - (-20)}\right) \times L_0 = \frac{-L_0}{3}$$

For part QR: longitudinal magnification

Length of image
$$L_2 = \left(\frac{f}{f-u}\right)^2 L_0$$

$$= \left(\frac{-5}{-5 - (-20)}\right)^2 \times L_0 = \frac{L_0}{9} \Rightarrow \frac{L_1}{L_2} = \frac{3}{1}$$

130 (b)

When light enters from air or vacuum, *ie*, when light goes from one medium to other, then its frequency does not change *ie*, remains unchanged.

Hence, frequency of light will remain 5×10^{14} Hz

131 (b)

Given that, focal length of a convex lens f=10 cm, since the lens is used as magnifier, so the object is placed between focal point and lens and image is formed towards the object so

$$v = -25 cm$$

From lens formula

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\Rightarrow \frac{1}{10} = \frac{1}{-25} - \frac{1}{u}$$

$$\frac{1}{u} = -\frac{1}{25} - \frac{1}{10} = -\frac{7}{50}$$

$$\Rightarrow u = -\frac{50}{7}cm = -7.14 cm$$

132 (a)

At the time of solar eclipse light is received from chromosphere. The bright lines appear exactly at the places where dark lines were there. Hence at the time of solar eclipse continuous spectrum is obtained

133 (a)

Clearly,
$$i + r = i + i = 140^{\circ}$$

Or $i = 70^{\circ}$

Clearly, plane mirror makes as angle of 20° with vertical and 70° with horizontal

134 (a)

$$P = P_1 + P_2$$

$$= \frac{1}{f_1} + \frac{1}{f_2} = \frac{100}{20} + \frac{100}{25}$$

$$= 5 + 4 = 9D$$

135 (d)

If η is the luminous efficiency of the bulb then luminous flux by 120 *watt* at 555 $nm = \eta \times 120$

Let bulb of P watt at 600 nm produces the same luminous flux as by 120 watt at 555 nm then

$$\eta \times 120 = \eta P \times 0.6 \Rightarrow P = \frac{120}{0.6} = 200 \text{ watt}$$

136 (c)

$$f = \frac{R}{(\mu - 1)} \Rightarrow 30 = \frac{10}{(\mu - 1)} = \mu = 1.33$$

137 (c)

From the formula $\sin C = \frac{1}{1\mu_2} \Rightarrow \sin C = {}_{2}\mu_1$

$$= \frac{\mu_1}{\mu_2} = \frac{v_2}{v_1} \Rightarrow \sin C = \frac{10x/t_2}{x/t_1}$$
$$\Rightarrow \sin C = \frac{10t_1}{t_2} \Rightarrow C = \sin^{-1}\left(\frac{10t_1}{t_2}\right)$$

138 **(b)**

$$\frac{f_l}{f_a} = \frac{a\mu_g - 1}{l\mu_g - 1} \Rightarrow \frac{-0.5}{0.2} = \frac{1.5 - 1}{l\mu_g - 1} \Rightarrow l\mu_g - 1$$

$$= -0.2$$

$$\Rightarrow l\mu_g = 0.8 = \frac{4}{5} \Rightarrow \frac{a\mu_g}{a\mu_l} = \frac{4}{5} \Rightarrow \frac{1.5}{a\mu_l} = \frac{4}{5}$$

$$\Rightarrow a\mu_l = \frac{15}{8}$$

139 (a)

Mirror formula

$$\frac{1}{f} = \frac{1}{v} = \frac{1}{u} \Rightarrow \frac{1}{f} = \frac{1}{-20} + \frac{1}{(-10)} \Rightarrow f = \frac{-20}{3}cm.$$
 If object moves towards the mirror by $0.1m$ then. $u = (10 - 0.1) = 9.9cm.$ Hence again from mirror formula $\frac{1}{-20/3} = \frac{1}{v'} + \frac{1}{-9.9} \Rightarrow v' = -20.4 \ cm \ i. \ e.,$

image shifts away from the mirror by 0.4 cm

141 (d)

In minimum deviation position $\angle i = \angle e$

142 **(c**)

$$\mu \propto \frac{1}{\lambda} \Rightarrow \frac{1}{4/3} = \frac{x}{4200} \Rightarrow x = 3150\text{Å}$$

143 (a)

$$\lambda_{medium} = \frac{\lambda_{air}}{\mu} = \frac{6000}{1.5} = 4000 \text{ Å}$$

144 (a)

In the morning or evening, the sun is at the horizon and refractive index in the atmosphere of the earth decreases with height. Due to this, the light reaching the earth's atmosphere, bends unequally, and the image of the sun get's distorted and it appears elliptical and larger

145 (d)

For surface
$$P$$
, $\frac{1}{v_1} = \frac{1}{-f} - \frac{1}{(-u)} = -1 + \frac{1}{3} = -\frac{2}{3}$
 $\Rightarrow v_1 = -\frac{3}{2}m$

For surface
$$Q_1, \frac{1}{v_2} = \frac{1}{-f} + \frac{1}{u} = -1 + \frac{1}{5} = -\frac{4}{5}$$

$$\Rightarrow v_2 = -\frac{5}{4}m : v_1 - v_2 = 0.25m$$

Magnification of
$$P = \frac{v_1}{u} = \frac{3/2}{3} = \frac{1}{2}$$

$$\therefore$$
 Height of $P = \frac{1}{2} \times 2 = 1m$

Magnification of
$$Q = \frac{v_2}{v} = \frac{5/4}{5} = \frac{1}{4}$$

$$\therefore$$
 Height of $Q = \frac{1}{4} \times 2 = 0.5m$

146 (a)

Equivalent focal length (F) of two lenses separated by distance d is given by

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$= \frac{1}{0.2} + \frac{1}{0.2} - \frac{0.5}{(0.2)(0.2)}$$

$$= 5 + 5 - 0.5 \times 5 \times 5$$

$$= 10 - 12.5$$

$$= -2.5$$

$$F = -\frac{1}{2.5} = -0.4 m$$

147 (c)

Illuminance at A, $I_A = \frac{L}{h^2}$

Illuminance at B, $I_B = \frac{L}{\sqrt{(h^2 + r^2)^2}} \cos \theta$

$$=\frac{Lh}{(r^2+h^2)^{3/2}}$$

$$\therefore \frac{I_A}{I_B} = \left(1 + \frac{r^2}{h^2}\right)^{3/2} = \left(1 + \frac{8^2}{8^2}\right)^{3/2} = 2^{3/2}$$
$$= 2\sqrt{2} \cdot 1$$

148 (c

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

For lens to be concave, $\left(\frac{1}{r_1} - \frac{1}{r_2}\right) > 0$

Or
$$\frac{1}{r_1} > \frac{1}{r_2}$$
 or $r_1 < r_2$

150 (d)

From Snell's law

$$\mu = \frac{1}{\sin i_C}$$

Since, $i_B > i_A$

$$\sin i_{:B} > \sin i_{A}$$

$$\Rightarrow \mu_B < \mu_A$$

When angle of incidence in the denser medium is increased even very slightly beyond the critical angle, then the ray of light is reflected back

completely in the denser medium and total internal reflection takes place. Let θ be critical angle from medium A to B, then

$$\beta \mu_{A} = \frac{1}{\sin \theta}$$

$$\Rightarrow \sin \theta = \frac{1}{\beta \mu_{A}} \frac{\mu_{B}}{\mu_{A}}$$

$$= \frac{1}{\sin i_{B}} \times \frac{\sin i_{A}}{1}$$

$$\Rightarrow \theta = \sin^{-1} \left[\frac{\sin i_{A}}{\sin i_{B}} \right]$$

151 (c) $\lambda \propto \frac{1}{\mu} \Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{\mu_2}{\mu_1} = \frac{\mu}{1}$

Diamond sparkles more compared to ordinary glass, because of the phenomenon of total internal reflection of light, depending on the critical angle of the incidence of light in a material medium at

The higher the refractive index of a transparent medium, the smaller is the critical angle and hence, the larger is the range of angles of incidence for more light to be totally reflected. A diamond has a large refractive index (2.417) and very small critical angle compared to say glass, hence diamond sparkles most.

153 (d)

$$v \cos 45^{\circ} = 10 \ v = 10\sqrt{2} \ cms^{-1}$$

its bounding surface with air.

In the ceiling mirror be original velocity will be seen

154 **(d)**

By Brewster's law

 $\mu = \tan i_p = \tan 60^\circ = \sqrt{3}$ 155 **(b)**

Time taken by light to travel distance x through a medium of refractive index μ is

$$t = \frac{\mu x}{c} \Rightarrow \frac{\mu_B}{\mu_A} = \frac{x_A}{x_B} = \frac{6}{4} \Rightarrow {}_A \mu_B = \frac{3}{2} = 1.5$$

156 (b)

$$\frac{I}{O} = \frac{f - v}{f} \Rightarrow \frac{I}{+1.5} = \frac{(25 - 75)}{25} = -2 \Rightarrow I$$

$$= -3 \text{ cm}$$

157 (a)

$$\mu = \frac{c}{v} = \frac{c}{v\lambda} = \frac{3 \times 10^8}{4 \times 10^{14} \times 5 \times 10^{-7}} = 1.5$$

158 (d)

The parallel beam of light forms a point image at the back of a sphere of refraction index n as shown in figure.

If *R* is the radius of sphere,

Then
$$u = \infty$$

 $v = 2R$ (from figure)

Since,

$$\frac{n}{v} - \frac{1}{u} = \frac{n-1}{R}$$

Putting values, we get

$$\frac{n}{2R} = \frac{1}{\infty} = \frac{n-1}{R}$$

$$\frac{n}{2R} = \frac{n-1}{R}$$

$$n = 2n-2$$

$$\therefore n = 2$$

159 (a)

$$m = \frac{f}{f+u}$$

$$\frac{1}{2} = \frac{-20}{-20+u} \text{ or } -20+u = -40$$
Or $u = -40+20 \text{ or } u = -20 \text{ cm}$

160 (c)

$$\frac{\theta = \frac{1}{2} \times \frac{\pi}{180} \text{ rad}}{\text{diametar of image}} = \theta$$

Or diameter of image

$$=\frac{1}{2} \times \frac{\pi}{180} \times \frac{15}{2} \times 100 \text{ cm} = 6.55 \text{ cm}$$

161 (a

$$m = \frac{f}{f+u} \Rightarrow -\frac{1}{4} = \frac{30}{30+u} \Rightarrow u = -150 \ cm$$

162 (a

By the hypothesis, we know that

$$i_1 + i_2 = A + \delta \Rightarrow 55^\circ + 46^\circ = 60^\circ + \delta \Rightarrow \delta = 41^\circ$$

But $\delta_m < \delta$, so $\delta_m < 41^\circ$

163 (b)

$$\mu = \frac{1}{\sin C} = \frac{1}{\sin 30} = 2$$

$$\therefore v = \frac{3 \times 10^8}{2} = 1.5 \times 10^8 m/s$$

165 (a)

Here,
$$\mu_g = 1.5 = \frac{3}{2}$$
, $\mu_{w_{yy}} = \frac{4}{3}$
 $R_1 = R$, $\Rightarrow R_2 = -R$

From, lens maker's formula

$$\begin{split} &\frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \text{where } \mu = \frac{\mu_L}{\mu_M} \\ & \div \frac{1}{f_{a\,\mathrm{a}}} = \left(\frac{\mu_\mathrm{g}}{\mu_{a\,\mathrm{a}}} - 1\right)\left(\frac{1}{R} - \frac{1}{(-R)}\right) \\ & \text{Or } \frac{1}{f_{a\,\mathrm{a}}} = \left(\frac{3/2}{1} - 1\right)\frac{2}{R} \\ & \Rightarrow \frac{1}{f_a} = \frac{1}{R} \end{split}$$

$$\begin{aligned} &\frac{1}{f_{w_{xx}}} = \left(\frac{\mu_{g}}{\mu_{wa}} - 1\right) \left(\frac{1}{R} - \frac{1}{(-R)}\right) \\ &\frac{1}{f_{2}} = \left(\frac{3/2}{4/3} - 1\right) \frac{2}{R} \\ &\text{Or } \frac{1}{f_{w}} = \frac{1}{4R} \end{aligned}$$

Or
$$f_{w_{yy}} = 4R$$

166 (a)

We know that

$$\mu = \frac{\sin i}{\sin r} \text{ and } i + r = 90^{\circ}$$

Or
$$r = 90^{\circ} - i$$

$$\mu = \frac{\sin i}{\sin(90^\circ - i)} = \tan i$$

Or
$$i = \tan^{-1}(\mu) = \tan^{-1}(1.62)$$

167 (c)

Since the ray emerges normally, therefore e = 0According to relation $A + \delta = i + e$, we get i =

Hence by
$$\delta = (\mu - 1)A$$
, we get $i = \mu A$

Consider the figure if smallest angle of incidence θ is greater than critical angle then all light will emerge out of B

$$\Rightarrow \theta \ge \sin^{-1}\left(\frac{1}{\mu}\right) \Rightarrow \sin \theta \ge \frac{1}{\mu}$$

From figure $\sin \theta = \frac{R}{R+d}$

$$\Rightarrow \frac{R}{R+d} \ge \frac{1}{\mu} \Rightarrow \left(1 + \frac{d}{R}\right) \le \mu$$

$$\Rightarrow \frac{d}{R} \le \mu - 1 \Rightarrow \left(\frac{d}{R}\right)_{\text{max}} = 0.5$$

Limit of resolution =
$$\frac{1.22 \,\lambda}{a} \times \frac{180}{\pi} \text{ (in degree)}$$
$$= \left(\frac{1.22 \times (6000 \times 10^{-10})}{5} \times \frac{180}{\pi}\right)^o = 0.03 \text{ sec}$$

$$\frac{1}{v} + \frac{1}{-600} = \frac{1}{20} \text{ or } \frac{1}{v} = \frac{31}{600}$$

$$\text{Or } v = \frac{600}{31} \text{ cm} = 19.35$$

172 (d)

Angle of incidence = angle of emergence,

Ie,
$$i = i'$$

Also, $i' = \frac{3}{4} \times \text{angle of equilateral prism}$

$$=\frac{3}{4}\times60^{\circ}=45^{\circ}$$

Thus, angle of deviation

$$=i+i'-A$$

$$=(45^{\circ}+45^{\circ}-60^{\circ})=30^{\circ}$$

173 (d)

Refractive index, $\mu_d = \frac{c}{v_d}$

Hence,
$$v_d = \frac{c}{\mu_d} = \frac{3 \times 10^8}{2}$$

$$= 1.5 \times 10^8 \text{ms}^{-1} = 1.5 \times 10^{10} \text{cms}^{-1}$$

175 (a)

$$P = \frac{1}{f} = -\frac{1}{v} + \frac{1}{u} = -\frac{1}{100} + \frac{1}{25} = \frac{3}{100} = +3D$$

176 (a)

$$\frac{\omega_1}{\omega_2} = \frac{1}{2}$$

Now,
$$\frac{f_1}{f_2} = -\frac{\omega_1}{\omega_2} = -\frac{1}{2}$$

Or $f_2 = -2f_1$
Now, $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$

Or
$$f_2 = -2f_2$$

Now,
$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\frac{1}{50} = \frac{1}{f_1} + \frac{1}{-2f_1}$$
Or $50f = \frac{-2+1}{-2f_1} = \frac{1}{2f_1}$
Or $2f_1 = 50$ or $f_1 = 25$ cm

$$\text{Or } 2f_1 = 50 \text{ or } f_1 = 25 \text{ cm}$$

Again $f_2 = -2 \times 25 \text{ cm} = -50 \text{ cm}$

177 (d)

Beam first converges and then diverges

178 (b)

Image is virtual so m = +3 and $f = \frac{R}{2} = 18$ cm So from $m = \frac{f}{f - u} \Rightarrow 3 = \frac{(-18)}{(-18) - u} \Rightarrow u = -12 \ cm$

179 (b)

From the lens formula

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \text{ we have,}$$

$$\frac{1}{f} = \frac{1}{10} - \frac{1}{-10}$$

$$or f = +5$$

Further, $\Delta u = 0.1$

And $\Delta v = 0.1$ (from the graph)

Now, differentiating the lens formula we have,

$$\frac{\Delta f}{f^2} = \frac{\Delta v}{v^2} + \frac{\Delta u}{u^2}$$
or $\Delta f = \left(\frac{\Delta v}{v^2} + \frac{\Delta u}{u^2}\right) f^2$

Substituting the values we have

$$\Delta f = \left(\frac{0.1}{10^2} + \frac{0.1}{10^2}\right)(5)^2 = 0.05$$

$$\therefore f \pm \Delta f = 5 \pm 0.05$$

180 (b)

Apparent depth $h' = \frac{h}{air \mu_{liquid}}$

$$\Rightarrow \frac{dh'}{dt} = \frac{1}{a\mu_{\omega}} \frac{dh}{dt} \Rightarrow x = \frac{1}{a\mu_{\omega}} \frac{dh}{dt} \quad \left[\because \frac{dh'}{dt} = x \right]$$
$$\Rightarrow \frac{dh}{dt} = {}_{a}\mu_{\omega}x$$

Now volume of water $V = \pi R^2 h$

$$\begin{split} &\Rightarrow \frac{dV}{dt} = \pi R^2 \frac{dh}{dt} = \pi R^2 \cdot {}_a \mu_\omega x \\ &= {}_a \mu_\omega \pi R^2 x = \frac{\mu_\omega}{\mu_a} \pi R^2 x = \left(\frac{n_2}{n_1}\right) \pi R^2 x \end{split}$$

181 (b)

Since there is no parallax, it means that both images (By plane mirror and convex mirror) coinciding each other

According to property of plane mirror it will form image at a distance of 30 cm behind it. Hence for convex mirror u = -50 cm, v = +10 cm

By using
$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u} \Rightarrow \frac{1}{f} = \frac{1}{+10} + \frac{1}{-50} = \frac{4}{50}$$

 $\Rightarrow f = \frac{25}{2} cm \Rightarrow R = 2f = 25cm$

182 (d)

Objects are invisible in liquid of R.I. equal to that

183 (b)

When a ray from main O in air (rarer medium) goes to water (denser medium), then it bends towards the normal. Extent MN backwards meet at point O'. Therefore, it appears to the fish as if the man is taller than what he actually is

An optical fibre is a transparent thin fibre, usually made of glass or plastic for transmitting light. Optical fibres are used in imagine optics, and work on the principle of total internal reflection of light. Bundles of fibres are used along with lenses for long, thin imagine devices called endoscopes, which are used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy).

185 (a)

Here,
$$i = 45^{\circ}$$
, $A = 60^{\circ}$
Angle of minimum deviation
 $\delta_m = 2i - A = 2 \times 45^{\circ} - 60^{\circ} = 30^{\circ}$

186 (b)

Object is placed at distance 2f from the lens. So first image I will be formed at distance 2f on other side. This image I_1 will behave like a virtual object for mirror. The second image I_2 will be formed at distance 20 cm in front of the mirror, or at distance 10 cm to the left hand side of the lens. Now applying lens formula

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\therefore \frac{1}{v} - \frac{1}{+10} = \frac{1}{+15}$$

or v = 16 cm

Therefore, the final image is at distance 16 cm from the mirror. But, this image will be real. This is because ray of light is travelling from right to left.

187 (b)

$$\mu \propto \frac{1}{v} \Rightarrow \frac{\mu_g}{\mu_w} = \frac{v_w}{v_g} \Rightarrow \frac{3/2}{4/3} = \frac{v_w}{2 \times 10^8}$$
$$\Rightarrow v_w = 2.25 \times 10^8 \text{m/s}$$

188 (c)

For myopic eye f = - (defected far point)

$$\Rightarrow f = -40 \ cm \ \Rightarrow P = \frac{100}{-40} = -2.5 \ D$$

189 (a)

Ray comes out from CD, means rays after refraction from AB get, total intensity reflected at AD

$$\frac{n_1}{n_2} = \frac{\sin \alpha_{\text{max}}}{\sin r_1} \Rightarrow \alpha_{\text{max}} = \sin^{-1} \left[\frac{n_1}{n_2} \sin r_1 \right] \dots (i)$$
Also $r_1 + r_2 = 90^{\circ} \Rightarrow r_1 = 90 - r_2 = 90 - C$

$$\Rightarrow r_1 = 90 - \sin^{-1}\left(\frac{1}{2\mu_1}\right) \Rightarrow r_1$$
$$= 90 - \sin^{-1}\left(\frac{n_2}{n_1}\right) \dots (ii)$$

Hence from equation (i) and (ii)

$$\begin{split} &\alpha_{\max} = \sin^{-1}\left[\frac{n_1}{n_2}\sin\left(90 - \sin^{-1}\frac{n_2}{n_1}\right)\right] \\ &= \sin^{-1}\left[\frac{n_1}{n_2}\cos(\sin^{-1}\left(\frac{n_2}{n_1}\right)\right] \end{split}$$

$$\mu = \frac{C}{C_m} \Rightarrow C_m = \frac{C}{1.5}$$

191 (c)

Efficiency of light source

$$\eta = \frac{\phi}{P} \quad ...(i) \quad \text{and } L = \frac{\phi}{4\pi} \quad ...(ii)$$

From equation (i) and (ii)

$$\Rightarrow P = \frac{4\pi L}{n} = \frac{4\pi \times 35}{5} \approx 88 W$$

192 (a)

Normal shift $\Delta x = \left(1 - \frac{1}{\mu}\right)t$ and shift takes place in direction of ray

193 (a)

At minimum deviation ($\delta = \delta_m$)

$$r_1 = r_2 = \frac{A}{2} = \frac{60^{\circ}}{2} = 30^{\circ}$$
 (for both colours)

194 (a

The illuminance at A is

$$I_A = \frac{1}{(\sqrt{13})^2} \times \cos \theta_1 = \frac{L}{13} \times \frac{3}{\sqrt{13}} = \frac{3L}{(13)^{3/2}}$$

The illuminance at B is

$$I_B = \frac{L}{\left(\sqrt{17}\right)^2} \times \cos\theta_2$$

$$= \frac{L}{17} \times \frac{3}{\sqrt{17}} = \frac{3L}{(17)^{3/2}}$$

$$\therefore \frac{I_A}{I_B} = \left(\frac{17}{13}\right)^{3/2}$$

195 (b

Power of convex lens $P_1 = \frac{100}{40} = 2.5 D$

Power of concave lens $P_2 = -\frac{100}{25} = -4 D$

Now $P = P_1 + P_2 = 2.5 D - 4 D = -1.5 D$

196 (b)

In normal adjustment of telescope tube, final image is formed at infinity, ie, $u_e=f_e$ Hence, length of telescope tube Here, $f_0=100 \, \mathrm{cm}$, $f_e=4 \, \mathrm{cm}$

Here, $j_0 = 100$ cm, $j_e = 4$ cm

$$L = 200 + 4 = 204 \text{ cm}$$

197 (a)

Full use of resolving power means whole aperture of objective in use. And for relaxed vision

$$\frac{f_o}{f_e} = \frac{D}{d} \Rightarrow \frac{300}{f_e} = \frac{15}{0.3} \Rightarrow f_e = 6 \text{ cm}$$

$$r_1 = 10 \text{ cm}, r_2 = 8 \text{ cm}$$

$$\frac{l_1}{l_2} = \frac{64}{100}, 1 - \frac{l_1}{l_2} = 1 - \frac{64}{100}$$

$$\text{Or } \frac{l_2 - l_1}{l_2} = \frac{36}{100}$$

$$\text{Or } \frac{l_2 - l_1}{l_2} \times 100 = 36\%$$

$$\omega = \frac{\mu_V - \mu_R}{\mu_V - 1} = \frac{1.65 - 1.61}{1.63 - 1}$$

Only red colour will be seen in spectrum

Luminous intensity $L = \frac{\phi}{4\pi} \Rightarrow 1 = \frac{\phi}{4\pi} \Rightarrow \phi = 4\pi$

203 (a)

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\frac{1}{f} = \frac{1}{-4} - \frac{1}{-10}$$

$$\text{Or } \frac{1}{f} = \frac{1}{10} - \frac{1}{4}$$

$$\text{Or } \frac{1}{f} = \frac{2-5}{20} = -\frac{3}{20}$$

$$\text{Or } f = -\frac{20}{3} \text{ cm} = -6.67 \text{ cm}$$

The negative sign indicates that the lens is

204 (a)

As u goes from 0 to $-\infty$, v goes from +0 to +f

$$i = \frac{A + \delta_m}{2} = 50^{\circ}$$

206 (d)

Here,
$$v_A = 1.8 \times 10^8 ms^{-1}$$

 $v_B = 2.4 \times 10^8 ms^{-1}$

Light travels slower in denser medium. Hence medium A is a denser medium and medium B is a rarer medium. Here, light travels from medium A to medium B.

Let C be the critical angle between them

$$\therefore \sin C = {}^{A}\mu_{B} = \frac{1}{{}^{B}\mu_{A}}$$

Refractive index of medium B w.r.t medium A is

$${}^{A}\mu_{B} = \frac{\text{Velocity of light in medium } A}{\text{Velocity of light in medium } B} = \frac{v_{A}}{v_{B}}$$

$$\therefore \sin C = \frac{v_A}{v_B} = \frac{1.8 \times 10^8}{2.4 \times 10^8} = \frac{3}{4}$$

$$\Rightarrow C = \sin^{-1} \left(\frac{3}{4}\right)$$

207 (d)

Image formed by convex mirror is always. Erect diminished and virtual

208 (d)

In vacuum speed of light is constant and is equal to $3 \times 10^8 m/s$

209 (c)

The blue colour of sky is due to Rayleight's scattering $\left(\propto \frac{1}{14} \right)$

As light moves through the atmosphere, most of the longer wavelengths pass straight through, little of the red, orange and yellow light is affected by air. However, much of the shorter wavelength light (blue) is absorbed by the gas molecules. The absorbed blue light is then radiated in different directions. It gets scattered all around the sky and hence sky appears blue. In order, that sky appears red will be possible if atmospheric particles scatter red light more than blue light.

210 (d)

Here, Angle of prism, $A = 60^{\circ}$ For minimum deviation, A = 2rOr $r = \frac{A}{2} = \frac{60^{\circ}}{2} = 30^{\circ}$ for both colours

211 (a)

In Galiean telescope a convergent lens is used as the objective and a divergent lens as the eyepiece. Magnifying power and length of telescope are written as

$$M = \frac{f_0}{u_e} and L = f_0 - u_e$$

In normal adjustment, ie, in relaxed eye state

$$u_e = f_e$$

So,
$$M_{\infty} = \frac{f_0}{f_e} = 50$$

or
$$f_e = \frac{f_0}{50} = \frac{100}{50} = 2 cm$$

And $L_{\infty} = f_0 - f_e$

$$L_{\infty} = 100-2 = 98 \text{ cm}$$

212 (b)

To obtain, an inverted and equal size image, object must be paced at a distance of 2f from lens, i.e. 40 cm in this case

213 (c)

Total number of waves =
$$\frac{(1.5)t}{\lambda}$$
 ... (i)

$$\because \left(\frac{\text{Total number}}{\text{of waves}} \right) = \left(\frac{\text{optical path length}}{\text{wavelength}} \right)$$
For B and C

Total number of waves = $\frac{n_B\left(\frac{t}{3}\right)}{\lambda} + \frac{(1.6)\left(\frac{2t}{3}\right)}{\lambda} \dots$ (ii) Equating (i) and (ii) $n_B = 1.3$

214 (a)

Cross wire arrangement is used to make measurements

215 (c)

The aberration of lens due to which all the rays passing through the lens are not focused at a single point and image of point object formed is blurred is called spherical aberration. It is reduced by a using two plano convex lenses separated by a distance. If the distance between the two plano convex lenses is equal to the difference in their focal lengths and the incident rays fall upon the lens of large focal length, then this combination is almost free from spherical aberration. In this divided at all the surfaces of the two lenses and so, the spherical aberration is almost removed. This method is used in removing spherical aberration in eyepieces.

216 (a)

$$m = \frac{f_0}{f_e} = \frac{30}{2.5} = 12$$

Resolving limit = $\frac{1.22 \,\lambda}{a} = \frac{1.22 \times (5000 \times 10^{-10})}{0.1}$ $= 6.1 \times 10^{-6} rad$

217 (a)

$$\theta = (\mu_v - \mu_r)A = 0.02 \times 5^\circ = 0.1^\circ$$

As laws of reflection to be true for all points of the 228 (d) remaining part of the mirror, the image will be that of the whole object. However, as the area of the reflecting surface has been reduced, the intensity of the image will reduce (in this case half)

219 (b)

Blue colour of sea water is due to scattering of sunlight by water molecules.

Unit vector along incident ray

$$\hat{\mathbf{l}} = \frac{\left(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}\right)}{\sqrt{29}}$$

Unit vector along normal $\hat{\mathbf{N}} = \frac{(3\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 2\hat{\mathbf{k}})}{7}$

Unit vector along reflected ray

$$\widehat{\mathbf{R}} = \widehat{\mathbf{i}} - 2(\widehat{\mathbf{i}} \cdot \widehat{\mathbf{j}}) \widehat{\mathbf{N}}$$

$$\Rightarrow \widehat{\mathbf{R}} = \frac{(2\widehat{\mathbf{i}} - 3\widehat{\mathbf{j}} + 4\widehat{\mathbf{k}})}{\sqrt{29}} - 2\left(\frac{32}{7\sqrt{29}}\right)$$

$$\times \left[\frac{(3\widehat{\mathbf{i}} - 6\widehat{\mathbf{j}} + 2\widehat{\mathbf{k}})}{7}\right]$$

$$\Rightarrow \widehat{\mathbf{R}} = \frac{(-94\widehat{\mathbf{i}} + 237\widehat{\mathbf{j}} + 68\widehat{\mathbf{k}})}{49\sqrt{29}}$$

222 (d)

Because for healthy eye image is always formed at retina.

223 (b)

$$L = f_o + f_e = 44$$
 and $|m| = \frac{f_o}{f_e} = 10$

This gives $f_0 = 40 \ cm$

224 (c)

The combination of two lenses is

As
$$\frac{4}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\therefore \frac{1}{F} = (u_1 - 1) \left(\frac{1}{\infty} + \frac{1}{R} \right) + (u_2 - 1) \left(\frac{1}{-R} - \frac{1}{\infty} \right)$$

$$= \frac{u_1 - 1}{R} + \frac{u_2 - 1}{R}$$

$$\frac{1}{F} = \frac{u_1 - u_2}{R}$$
Or $F = \frac{R}{|u_1 - u_2|}$

225 (a)

When convex lens is surrounded by denser medium, it behaves like a diverging lens

226 (a)

The defect is myopia (near sightedness) As we know for myopic person f = -(defected)

 \Rightarrow Defected far point $= -f = -\frac{1}{P} = \frac{1}{(-2)} = 0.5 m$

Apparent raise =
$$d\left(1 - \frac{1}{a\mu_w}\right)$$

= $12 \times \left(1 - \frac{3}{4}\right) = 12 \times \frac{1}{4} = 3 \text{ cm}$

229 (a)

From the figure, it is clear that eye is at 1.38 m from the foot. Rays from foot can enter eye after reflection at M_2 , whose height from ground

Again, eye is at 1.5 - 1.38 = 0.12 m from heat. Rays from head can enter eye after reflection at M_1 , whose height above eye is

$$\frac{0.12}{2} = 0.06 \text{ m}$$

 \therefore Minimum length of mirror = 0.69 + 0.06 = 0.75 m

230 (c)

In a plane mirror, the image formed is erect and of same size as of object. Thus, magnification of plane mirror is 1.

231 (b)

$${}_{1}\mu_{2} = \frac{1}{\sin c} = \frac{1}{\sin 45^{\circ}}$$
$$= \frac{1}{1/\sqrt{2}} = \sqrt{2} = 1.414$$

232 (d)

$$R = -30cm \Rightarrow f = -15cm$$

$$O = +2.5cm, u = -10 cm$$

By mirror formula $\frac{1}{-15} = \frac{1}{v} + \frac{1}{(-10)} \Rightarrow v = 30 \ cm$

Also
$$\frac{I}{0} = -\frac{v}{u} \Rightarrow \frac{I}{(+2.5)} = -\frac{30}{(-10)} \Rightarrow I = +7.5 \ cm$$

233 (c)

For minimum deviation through a prism, the refractive index of material of prism is given by

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

 $given, A=60^{\circ}, \mu=\sqrt{2}$

$$\therefore \sqrt{2} = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{60^{\circ}}{2}\right)}$$

$$or \sin\left(\frac{A+\delta_m}{2}\right) = \sqrt{2}\sin 30^\circ$$

$$or \sin\left(\frac{A+\delta m}{2}\right) = \sqrt{2} \times \frac{1}{2} = \frac{1}{\sqrt{2}}$$

$$or \sin\left(\frac{A+\delta_m}{2}\right) = \sin 45^\circ$$

$$or \ \frac{A + \delta_m}{2} = 45^{\circ}$$

But we know angle of incidence

$$i = \frac{A + \delta_m}{2} = 45^{\circ}$$

234 (a)

Equivalent focal length

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$= \frac{1}{20} + \frac{1}{30}$$

$$\therefore F = \frac{20 \times 30}{20 + 30}$$

$$= \frac{600}{50} = 12cm$$

235 (c)

Think in terms of rectangular hyperbola

236 (a)

Total length $L = f_o + f_e$ and both lenses are convex

237 **(c)**

A lens shows opposite behavior if $\mu_{
m medium} > \mu_{
m lens}$

238 (a)

Focal length of lens will increase by four times (i.e. 12 cm) while focal length of mirror will not affected by medium

239 (d)

$$HI = AB = d$$

and
$$DS = CD = \frac{d}{2}$$

$$: AH = 2AD$$

$$\Rightarrow GH = 2CD = \frac{2d}{2} = d$$

Similarly IJ = d so GJ = GH + HI + IJ = d + d + d = 3d

240 (b)

The angle subtended by the image of the sun at the mirror

 $=30'=\left(\frac{1}{2}\right)^o=\frac{\pi}{360}rac$

If x be the diameter of the image of the sun, then

$$\frac{\text{Arc}}{\text{Radius}} = \frac{x}{100} = \frac{\pi}{360}$$
$$\Rightarrow x = \frac{100\pi}{360} = 0.87 \text{ cm}$$

241 (a)

We know,

$$\frac{y}{D} \ge 1.22 \frac{\lambda}{d}$$

$$\Rightarrow D \leq \frac{yd}{1.22\lambda}$$

$$=\frac{10^{-3}\times3\times10^{-3}}{1.22\times5\times10^{-7}}$$

$$=\frac{30}{6.1}=5\ m$$

$$D_{\text{max}} = 5m$$

244 (c)

For a lens
$$m = \frac{f - v}{f} \Rightarrow m = \left(-\frac{1}{f}\right)v + 1$$

Comparing this equation with y = mx + c(equation of straight line)

245 (c)

For one prism,
$$\omega_1 = \frac{\delta_B - \delta_R}{\delta} = \frac{12 - 8}{10} \left[\because \delta = \frac{\delta_B + \delta_R}{2} \right]$$

$$\Rightarrow \omega_1 = \frac{4}{10}$$

For other prism,
$$\omega_2 = \frac{\delta_B - \delta_R}{\delta} = \frac{14 - 10}{12} \left[\because \delta = \frac{14 + 10}{2} \right]$$

$$\Rightarrow \omega_2 = \frac{4}{12} = \frac{1}{3}$$

$$\because \frac{\omega_1}{\omega_2} = \frac{4 \times 3}{10 \times 1} \text{ or } \frac{\omega_1}{\omega_2} = \frac{12}{10} = \frac{6}{5}$$

$$\frac{1}{F} = (1.5 - 1) \left(\frac{1}{20} - \frac{1}{\infty} \right) \Rightarrow F = 40 \text{ cm}$$

For the eye-piece

$$v_e = -25 \text{ cm}, f_e = 5 \text{ cm}$$

$$v_e = -25 \text{ cm}, f_e = 5 \text{ cm}$$

$$\frac{1}{-25} - \frac{1}{u_e} = \frac{1}{5}$$

Or
$$\frac{1}{u_e} = -\frac{1}{25} - \frac{1}{5}$$
 or $\frac{1}{u_e} = -\frac{-1-5}{25}$

Or
$$u_e = -\frac{25}{6}$$

Now,
$$v_o = L - |u_e| = 20 - \frac{25}{6}$$

$$=\frac{120-25}{6}$$
 cm $=\frac{95}{6}$ cm

$$= \frac{120 - 25}{6} \text{ cm} = \frac{95}{6} \text{ cm}$$
Now, $\frac{1}{95/6} - \frac{1}{u_0} = \frac{1}{1} \text{ or } \frac{1}{u_0} = \frac{6}{95} - 1$

Or
$$u_0 = -\frac{95}{89}$$
cm or $|u_0| = \frac{95}{89}$ cm

$$\frac{I}{O} = \frac{f}{f - u} \Rightarrow \frac{I}{+6} = \frac{-f}{-f - (-4f)} \Rightarrow I = -2cm$$

$$\mu = \frac{c}{v} = \frac{1/\sqrt{\mu_o \varepsilon_o}}{1/\sqrt{\mu \varepsilon}} = \sqrt{\frac{\mu \varepsilon}{\mu_o \varepsilon_o}}$$

250 (a)

$$M = \frac{f_0}{f_e}$$

$$9 = \frac{f_0}{f_0}$$
 or $f_0 = 9f_e$

Also,
$$L = f_o + f_e$$
 or $20 = f_o + f_e$

$$0r 20 = 9f_e + f_e \text{ or } 20 = 10 f_e$$

Or
$$f_e = 2 \text{ cm}$$

$$\therefore f_o = 9 \times 2 \text{ cm} = 18 \text{ cm}$$

251 (d)

$$\begin{aligned} &\frac{I_{\text{center}}}{I_{\text{edge}}} = \frac{(r^2 + h^2)^{3/2}}{h^3} \\ &\Rightarrow 8 = \frac{(r^2 + h^2)^{3/2}}{h^3} \Rightarrow 2h = (r^2 + h^2)^{1/2} \end{aligned}$$

$$\Rightarrow 4h^2 = r^2 + h^2 \Rightarrow 3h^2 = r^2 \Rightarrow h = \frac{r}{\sqrt{3}}$$

252 (a)

By formula
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

= $(1.5 - 1) \left(\frac{1}{40} + \frac{1}{40} \right) = 0.5 \times \frac{1}{20} = \frac{1}{40}$
 $\therefore f = 40 \text{ cm}$

253 (b)

Let a large convex lens is placed between two walls at a distance x from wall on which an electric bulb is fixed.

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$= \frac{1}{4 - x} - \frac{1}{-x} \qquad (\because u = -x, v = 4 - x)$$

$$= \frac{x + 4 - x}{(4 - x)(x)}$$

$$= \frac{4}{(4 - x)(x)}$$
or $f = \frac{(4 - x)x}{4} \qquad \dots \dots (i)$
Now magnification $m = \frac{v}{2} = \frac{4 - x}{2}$

Now magnification
$$m = \frac{v}{u} = \frac{4-x}{x}$$

$$\Rightarrow 1 = \frac{4-x}{x}$$

$$\Rightarrow x = 4 - x$$

$$\Rightarrow 2x = 4$$

$$\implies x = 2m$$

From eq. (i)

$$f = \frac{(4-2)(2)}{4} = \frac{2 \times 2}{4} = 1m$$

$$\frac{\delta_1}{\delta_2} = \frac{A_1}{A_2}$$

In the situation given, the image will be formed at infinity, if the object is at focus of the lens ie, at 20 cm from the lens. Hence, shift in position of object

$$x = 25 - 20 = \left(1 - \frac{1}{\mu}\right)t$$

$$5 = \left(1 - \frac{1}{1.5}\right)t$$

$$t = 15 \text{ cm}$$

257 (d)

$$\frac{\delta_{\omega}}{\delta_{a}} = \frac{(_{\omega}\mu_{g} - 1)}{(_{a}\mu_{g} - 1)} = \frac{\left(\frac{9}{8} - 1\right)}{\left(\frac{3}{2} - 1\right)} = \frac{1}{4}$$

258 (b)

Three lenses are → objective, eye piece and erecting lens

260 (a)

 $\mu_{blue} > \mu_{red}$

261 (c)

As seen from a rarer medium $(L_2 \text{ or } L_3)$ the interface L_1L_2 is concave and L_1L_3 is convex. The divergence produced by concave surface is much smaller than the convergence due to the convex surface. Hence, the arrangement corresponds to concave-convex lens

262 (b)

$$m = \frac{f}{f + u}$$

Now,
$$+2 = \frac{f}{f-10}$$

$$0r 2f - 20 = f \text{ or } f = 20 \text{ cm}$$

Or
$$2f - 20 = f$$
 or $f = 20$ cm
Again $-2 = \frac{20}{20+u}$ or $-40 - 2u = 20$

$$0r - 2u = 20 + 40 \text{ or } u = -30 \text{ cm}$$

Intensity of scattered light $I \propto \frac{1}{14}$, since λ_{blue} is least that's why sky looks blue

266 (a)

The given condition will be satisfied only if one source (S_1) placed on one side such that u < f(i.e., it lies under the focus). The other source

 (S_2) is placed on the other side of the lens such that u > f (i. e., it lies beyond the focus)

It S_1 is the object for lens then $\frac{1}{f} = \frac{1}{-v} - \frac{1}{-x}$

$$\Rightarrow \frac{1}{y} = \frac{1}{x} - \frac{1}{f}$$

If S_2 is the object for lens then

$$\frac{1}{f} = \frac{1}{+y} - \frac{1}{-(24-x)} \Rightarrow \frac{1}{y} = \frac{1}{f} - \frac{1}{(24-x)} \dots (ii)$$

From equations (i) and (ii)

$$\frac{1}{x} - \frac{1}{f} = \frac{1}{f} - \frac{1}{(24 - x)} \Rightarrow \frac{1}{x} + \frac{1}{(24 - x)} = \frac{2}{f} = \frac{2}{9}$$

$$\Rightarrow x^2 - 24x + 108 = 0. \text{ After solving the equation}$$

 $x = 18 \, cm, 6 \, cm$

$$f = -10 \text{ cm}, 0 = 5 \text{ cm},$$

$$u = -100 \text{ cm}, I = ?$$

$$\frac{I}{O} = \frac{f}{f - u}$$

$$I = \frac{-10}{-10 - (-100)} \times 5 = \frac{-10}{90} \times 5 \text{ cm}$$

$$= -0.55 \text{ cm}$$

269 (b)

From the figure

$$i_1 = 90^{\circ} - (90^{\circ} - A) = A$$

and
$$\propto = 90^{\circ} - 2i_1 = 90^{\circ} - 2A$$

$$i_2 = 90^{\circ} - \alpha = 90^{\circ} - (90^{\circ} - 2A) = 2A$$

$$\beta = 90^{\circ} - i_2 = 90^{\circ} - 2A$$

From the geometry of the figure

$$A + 2A + 2A = 180^{\circ}$$

$$A = 36^{\circ}$$

270 (c)

$$v_i = -\left(\frac{f}{f-u}\right)^2 \cdot v_o = -\left(\frac{-24}{-24 - (-60)}\right)^2 \times 9$$

= -4 cm/s

271 (c)

Here object and image are at the same position so this position must be centre of curvature

$$\therefore R = 12 cm$$

$$\Rightarrow f = \frac{R}{2}$$

$$A = r_1 + r_2$$

$$\therefore 30^\circ = r_1 + 0^\circ$$

or
$$r_1 = 30^{\circ}$$

Now,
$$\frac{\sin i}{\sin 30^\circ} = \sqrt{2}$$

or
$$\sin i = \sqrt{2} \times \frac{1}{2}$$

Or
$$\sin i = \frac{1}{\sqrt{2}}$$

Or
$$i = 45^{\circ}$$

$$f = \frac{R}{(\mu - 1)} = \frac{R}{(1.5 - 1)} = 2R$$

$${}_{2}\mu_{1} = \frac{1}{\sin \theta} \Rightarrow \frac{\mu_{1}}{\mu_{2}} = \frac{1}{\sin \theta} \Rightarrow \frac{v_{2}}{v_{1}} = \frac{1}{\sin \theta} \Rightarrow \frac{v_{2}}{v}$$
$$= \frac{1}{\sin \theta}$$
$$\Rightarrow v_{2} = \frac{v}{v_{2}}$$

If $n_l > n_g$ then the lens will be in more denser medium. Hence its nature will change and the convex lens will behave a concave lens

277 (a)

$$-\frac{1}{40} = (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{R_1} - \frac{1}{R_2} = -\frac{1}{20}$$
Now, $\frac{1}{f} = \left(\frac{1.5}{2} - 1\right) \left(-\frac{1}{20}\right)$
Or $\frac{1}{f} = -\frac{0.5}{2} \left(-\frac{1}{20}\right)$
Or $\frac{1}{f} = \frac{1}{80}$ or $f = 80$ cm

It behave like a convex lens of focal length 80 cm

Apparent shift
$$h = \left(1 - \frac{1}{\mu}\right)h$$

: Apparent shift produced by water

$$\Delta h_1 = \left(1 - \frac{1}{\mu_1}\right) h_1$$

And apparent shift produced by kerosene

$$\Delta h_2 = \left(1 - \frac{1}{\mu_2}\right) h_2$$

$$\Delta h = \Delta h_1 + \Delta h_2 = \left(1 - \frac{1}{\mu_1}\right) h_1 + \left(1 - \frac{1}{\mu_2}\right) h_2$$

279 (b)

In microscope final image formed is enlarged which in turn increases the visual angle

280 (a)

Our eye lens has a power to adjust its focal length to see the nearer and father objects, this process of adjusting focal length is called accommodation. However, if the object is brought too close or bring too far from the eye, the focal length cannot be adjusted to from the image on the retina. Thus, there is minimum or maximum distance for the clever vision of an object. For a normal eye, near point or least distant vision D = 25 cm and far $point = \infty$

281 (b)

$$P = \frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$= (1.5 - 1) \left(\frac{1}{\infty} - \frac{1}{1} \right)$$

$$= 0.5(-1)$$

$$P = -0.5 D$$

282 (b)

$$t = \frac{s}{v} = \frac{1.5 \times 10^8 \times 10^3}{3 \times 10^8} = 500 \text{ s} = 8.33 \text{ min}$$

Here focal length = f and u = -fOn putting these values in $\frac{1}{f} = \frac{f}{u} + \frac{1}{v}$

$$\Rightarrow \frac{1}{f} = -\frac{1}{f} + \frac{1}{v} \Rightarrow v = \frac{f}{2}$$

284 (d)

Magnification of a compound microscope is given

$$m = -\frac{v_o}{u_o} \times \frac{D}{u_e} \Rightarrow |m| = m_o \times m_e$$

285 (a)

Brewster discovered that when a beam of unpolarised light is reflected from a transparent medium (refractive index $=\mu$), the reflected light is completely plane polarized at a certain angle of incidence (called the angle of polarization θ_p)

Also,
$$\mu = \tan \theta_p$$

$$\therefore \text{Here, } \theta_p = \theta_1 = \tan^{-1}(1.62)$$

287 (d)

The two slabs will shift the image a distance

$$d = 2\left(1 - \frac{1}{\mu}\right)t = 2\left(1 - \frac{1}{1.5}\right)(1.5) = 1 cm$$

Therefore, final image will be 1 cm above point P

288 (a)

As limit of resolution of eye is $\left(\frac{1}{60}\right)^o$, the pillars will be seen distinctly if $\theta > \left(\frac{1}{60}\right)^{\theta}$

$$\Rightarrow d > \frac{3.14 \times 11 \times 10^3}{60 \times 180} \Rightarrow d > 3.2 m$$

289 (a)

Using mirror formula,

$$\frac{1}{+25/3} + \frac{1}{-u_1} = \frac{1}{+10}$$
Or $\frac{1}{u_1} = \frac{3}{25} - \frac{1}{10}$

Or
$$u_1 = 50 \,\text{m}$$

Or
$$u_1 = 50 \text{ m}$$

And $\frac{1}{(+50/7)} + \frac{1}{-u_1} = \frac{1}{+10}$

$$\therefore \frac{1}{u_2} = \frac{7}{50} - \frac{1}{10}$$

Or
$$u_2 = 25 \,\text{m}$$

Speed of object =
$$\frac{u_1 - u_2}{\text{time}}$$

$$= \frac{25}{30} \, \text{ms}^{-1}$$

$$= 3 \text{ kmh}^{-1}$$

290 (b)

$$\frac{n_2}{n_1} = \frac{1}{\sin C}$$

$$\frac{1}{\sin C} = \frac{\lambda_1}{\lambda_2} = \frac{6000}{4000} = \frac{3}{2}$$

$$C = \sin^{-1}\left(\frac{2}{3}\right)$$

291 (b)

Following arguments lead us easily to the right

(i) Angle between any two lines is the same as the angle between their perpendiculars

$$\therefore i = 30^{\circ}$$

$$(ii)\frac{1}{1.5} = \frac{\sin 30^{\circ}}{\sin r}$$

(ii)
$$\frac{1}{1.5} = \frac{\sin 30^{\circ}}{\sin r}$$

Or $\sin r = \frac{1.5}{2} = 0.75$

Or
$$r = 48.6^{\circ}$$

$$(iii)\theta = r - i = 18.6^{\circ}$$

Required angle = $2 \times 18.6 = 37.2^{\circ}$

292 (a)

For large objects, large image is formed on retina

$$m_{\infty} = -\frac{v_o}{u_o} \times \frac{D}{f_e}$$
From $\frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$

$$\Rightarrow \frac{1}{(+1.2)} = \frac{1}{v_o} - \frac{1}{(-1.25)} \Rightarrow v_o = 30 \text{ cm}$$

$$\therefore |m_{\infty}| = \frac{30}{1.25} \times \frac{25}{3} = 200$$

294 (c)

$$m = \frac{f}{f - u}$$

$$-\frac{1}{4} = \frac{-12}{-12 - u} = \frac{12}{12 + u}$$
Or $12 + u = -48$ or $u = -60$ cm

295 (b)

Plane mirror and convex mirror always from erect images. Image formed by concave mirror may be erected or inverted depending on position of object.

296 (d)

By the symmetry of the rays and location of the points

297 (b)

The condition for achromatism is

$$\omega_1 P_1 + \omega_2 P_2 = 0$$

$$\omega_1 P_1 = -\omega_2 P_2$$

$$\Rightarrow \frac{\omega_1}{\omega_2} = -\frac{P_2}{P_1}$$
Now, $P_1 + P_2 = 2D$
Or $5 + P_2 = 2$ or $P_1 = 2$

Or
$$5 + P_2 = 2$$
 or $P_2 = -3D$

$$\therefore \frac{\omega_1}{\omega_2} = -\frac{-3}{5} = \frac{3}{5}$$

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
If $R_1 = R$, $R_2 = -R$

$$f = \frac{R}{2(\mu - 1)} = \frac{20}{2(1.5 - 1)} = 20 \text{ cm}$$

$$\because \frac{I}{0} = \frac{f}{f + u}$$

$$\frac{I}{2} = \frac{20}{20 - 30} = -2$$

$$\Rightarrow I = -4 \text{ cm}$$

Image is Real and inverted

$$\frac{\lambda_2}{\lambda_1} = \frac{4800}{6000} = 0.8$$

New resolution limit = $0.8 \times 0.1 \text{ mm} = 0.08 \text{ mm}$

300 (a)

Refractive index
$$(\mu) = \frac{\text{real depth}}{\text{apparent depth}}$$

 $\Rightarrow \mu \propto \frac{1}{\text{apparent depth}}$

Since, violet light is refracted the maximum and red light are least, the refractive index is maximum for violet colour and minimum for red colour. Hence, letter which appears minimum raised are red.

301 (d)

Let focal length of convex lens is +f then focal length of concave lens would be $-\frac{3}{2}f$.

From the given condition,

$$\frac{1}{30} = \frac{1}{f} - \frac{2}{3f} = \frac{1}{3f}$$

$$\therefore f = 10 \text{ cm}$$

Therefore, focal length of convex lens = +10 cmand that of concave lens = -15 cm.

302 (d)

Semi-vertical angle = critical angle

Hence, $i_C = \sin^{-1}\left(\frac{1}{1.33}\right) = 48.75 \approx 49^\circ$

As
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$\therefore \frac{1}{20} = (1.5 - 1) \left(\frac{1}{\infty} - \frac{1}{R} \right)$$

$$\frac{1}{20} = \frac{-1}{2R}, R = -10 \text{ cm}$$

Refraction from rarer to denser medium

$$-\frac{\mu_1}{u} + \frac{\mu_2}{v} = \frac{\mu_2 - \mu_1}{R}, \text{ where } u = \infty, v = f$$

$$\therefore 0 + \frac{1.5}{f} = \frac{1.5 - 1}{10} = \frac{1}{20}, f = 30 \text{ cm}$$

$$\frac{I_1}{o} = \frac{v}{u}$$
 and $\frac{I_2}{o} = \frac{u}{v} \Rightarrow O^2 = I_1 I_2$

The focal length of combination is

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

en, $f_1 = 50 \, cm$, $f_2 = 50 \, cm$

$$\therefore \frac{1}{F} = \frac{1}{50} + \frac{1}{50} = \frac{2}{50}$$
$$\Rightarrow F = \frac{50}{2} = 25 \text{ cm}$$

Object when placed at center of curvature forms a real, inverted image of same size as object = $(2 \times$ $25 = 50 \, cm$

307 (c)

Given, the power of objective lens,

$$P_0 = 0.5 D$$

The power of eye-piece lens,

$$P_e = 20 D$$

The magnifying power of an astronomical telescope

$$M = \frac{f_0}{f_e}$$
or $M = \frac{P_e}{P_0}$ $\left(:: P = \frac{1}{f} \right)$

$$= \frac{20}{0.5} = 40$$

308 (d)

$$L = v_0 + f_e \Rightarrow v_0 = L - f_e$$

Or $v_0 = 19.2 \text{ cm}$

$$\frac{1}{19.2} - \frac{1}{u_0} = \frac{1}{1.6}$$

Or
$$-\frac{1}{10} = \frac{10}{100} - \frac{10}{1000}$$

$$Or - \frac{1}{u_s} = \frac{120 - 10}{192} = \frac{100}{192}$$

Or
$$-\frac{1}{u_o} = \frac{10}{16} - \frac{10}{192}$$

Or $-\frac{1}{u_o} = \frac{120 - 10}{192} = \frac{100}{192}$
Or $u_o = -\frac{192}{110}$ cm = -1.75 cm

309 (c)

$$m = \frac{f_o}{f_e} \left(1 + \frac{f_e}{D} \right)$$

310 (d)

311 (a)

Biconvex lens is cut perpendicularly to the principle axis, it will become a plano-convex lens. Focal length of biconvex lens

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{f} = (n-1)\frac{2}{R} \quad (\because R_1 = R, R_2 = -R)$$

$$\Rightarrow f = \frac{R}{2(n-1)} \quad \dots \dots (i)$$

CLICK HERE (>>

For plano-convex lens

Comparing Eqs. (i) and (ii), we see that focal length becomes double.

Power of lens P $\propto \frac{1}{focal \ length}$

Hence, power will become half.

New power = $\frac{4}{2}$ = 2 D

After critical angle reflection will be 100% and transmission is 0 %. Options (b) and (c) satisfy this condition. But option (c) is the correct option. Because in option (b) transmission is given 100% at $\theta = 0^{\circ}$, which is not true : Correct answer is (c).

314 (a)

Given that, the refractive index of the lens wrt air, $a\mu_{w} = 1.60$

And the refractive index of water wrt air $_a\mu_w=$

The focal length of the lens in air, f = 20cm

We know that for a lens

$$\frac{1}{f}=(\mu-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$$

When the lens is in

$$\begin{split} &\frac{1}{20} = \left(\ _a\mu_g - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \\ ∨ \frac{1}{20} = (1.60 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \\ ∨ \frac{1}{20} = 0.60 \times \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \quad \dots (i) \end{split}$$

When the lens is in t

$$\begin{split} &\frac{1}{f'} = \left(\ _{w}\mu_{g} - 1 \right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}} \right) \\ ∨ \frac{1}{f'} = \left(\frac{a\mu_{g}}{a\mu_{w}} - 1 \right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}} \right) \\ ∨ \frac{1}{f'} = \left(\frac{a\mu_{g} - a\mu_{w}}{a\mu_{w}} \right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}} \right) \\ & \therefore \frac{1}{f'} = \left(\frac{1.60 - 1.33}{1.33} \right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}} \right) \\ ∨ \frac{1}{f'} = \frac{27}{133} \left(\frac{1}{R_{1}} - \frac{1}{R_{2}} \right) \quad \dots \dots \dots (ii) \end{split}$$

On dividing Eq. (i) by Eq. (ii), we get

$$\frac{f'}{20} = \frac{0.60 \times 1.33}{27}$$

or $f' = 20 \times 2.95 cm \approx 60 cm$

315 (c)

Frequency remain unchanged

316 (b)

At point A, by Snell's law

$$\mu = \frac{\sin 45}{\sin r} \Rightarrow \sin r = \frac{1}{\mu\sqrt{2}}$$
 ... (i)

At point *B*, for total internal reflection $\sin i_1 = \frac{1}{\mu}$

From figure, $i_1 = 90 - r$

$$\therefore \sin(90^\circ - r) = \frac{1}{\mu}$$

$$\Rightarrow \cos r = \frac{1}{\mu} \qquad ... (ii)$$

Now
$$\cos r = \sqrt{1 - \sin^2 r} = \sqrt{1 - \frac{1}{2\mu^2}}$$

$$=\sqrt{\frac{2\mu^2-1}{2\mu^2}}$$
 ... (iii

From equation (ii) and (iii), $\frac{1}{\mu} = \sqrt{\frac{2\mu^2 - 1}{2\mu^2}}$

Squaring both side and then solving, we get $\mu =$

$$\sqrt{\frac{3}{2}}$$

317 (c)

 $\mu_{air} < \mu_{lens} < \mu_{water} i.e., 1 < \mu_{lens} < 1.33$

318 (c)

In minimum deviation position $\angle i_1 = \angle i_2$ and

$$I = \frac{L}{r^2}$$

$$\frac{a\mu_r}{w\mu_r} = \frac{\mu_r/\mu_a}{\mu_r/\mu_w} = \frac{\mu_w}{\mu_a} = a\mu_w$$

When the object is placed at the center of the glass sphere, the rays from the object fall normally on the surface of the sphere and emerge undeviated.

322 (c)

$$\theta = (\mu_v - \mu_R)R = (1.6 - 1.5) \times 5 = 0.5^{\circ}$$

323 (c)

$$c = \frac{x}{t_1}, v = \frac{10x}{t_2}$$

$$\sin C' = \frac{1}{\mu} = \frac{v}{c} = \frac{10x}{t_2} \times \frac{t_1}{x}$$

$$C' = \sin^{-1} \left(\frac{10 t_1}{t_2}\right) \dots (i)$$

$$C' = \sin^{-1}\left(\frac{10 t_1}{t_2}\right) \dots (i)$$

$$f = \frac{R}{2} \Rightarrow R = 40cm$$

325 (a)

Radio, waves can pass through dust, clouds, fog, etc, in a radio, telescope. It can detect very faint radio signal due to enormous size of its reflection. So it can be used at night and even in cloudy weather

326 (c)

$$\mu = 1 = 3\left(1 - \frac{1}{\mu}\right)$$
Or $1 - \frac{1}{\mu} = \frac{1}{3}$ or $\frac{1}{\mu} = 1 - \frac{1}{3} = \frac{2}{3}$ or $\mu = \frac{2}{3}$
Now, $\frac{1}{\sin i_c} = \frac{3}{2}$
Or $\sin i_c = \frac{2}{3}$ or $i_c = \sin^{-1}\left(\frac{2}{3}\right)$
Or $i_c = \sin^{-1}(0.67)$

327 (a)

According to Cartesian sign convention Object distance, $u = -15 \ cm$

Focal length, f = -10cm

Using mirror formula $\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \Rightarrow \frac{1}{(-15)} + \frac{1}{v} = \frac{1}{v}$

$$\frac{1}{(-10)}$$

$$\frac{1}{v} = \frac{1}{(-10)} - \frac{1}{(-15)} + \frac{1}{(-10)} + \frac{1}{(15)} \text{ or } v = -30cm$$

This image is $30 \ cm$ from the mirror on the same side of the object

Magnification, $m = -\frac{v}{u} = -\frac{(-30 \text{ cm})}{(-15 \text{cm})} = -2 \text{cm}$

The image is magnified, real and inverted

328 (d)

$$\frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \text{ where } n_2 \text{ and } n_1 \text{ are the}$$
 refractive indices of the material of the lens and of the surroundings respectively. For a double concave lens, $\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ is always negative

Hence f is negative only when $n_2 > n_1$

329 (d)

A concave lens always produces a virtual and erect image on the same side of the lens, which is smaller in size.

330 (b)

$$f = -d = -100 \text{ cm} = -1 \text{ m}$$

$$\therefore P = \frac{1}{f} = \frac{1}{-1} = -1 D$$

331 (a)

1 (a)
$$\frac{1}{f} = \left(\frac{n}{1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{f_1} = \left(\frac{n}{n'} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
Dividing, $\frac{f_1}{f} = \frac{(n-1)n'}{n-n'}$

Or $f_1 = -\frac{fn'(n-1)}{n'-n}$

332 (a)

$$\frac{f_l}{f_a} = \frac{a\mu_g - 1}{l\mu_g - 1} = \frac{1.5 - 1}{\frac{1.5}{1.75} - 1} = -\frac{1.75 \times 0.50}{0.25} = -3.5$$

$$\therefore f_l = -3.5 \, f_a \Rightarrow f_l = +3.5R \, [\because f_a = R]$$
Hence on immersing the lens in the liquid, it

Hence on immersing the lens in the liquid, it behaves as a converging lens of focal length 3.5 *R*

333 (a)

A camera is a device used to take pictures, either singly or in sequence. Camera's have a lens positioned in front of the camera's opening together the incoming light and to focus the image or part of the image on the recording surface. The size of aperture (its diameter) controls the brightness of the scene control and the amount of light that enters the camera during a period of time, and the shutter controls the length of time that the light hits the recording surface. A diameter of an aperture is measured in f- stops. A lower f- stops number opens the aperture admits more light onto the camera sensor. Higher f – stop numbers make the cameras aperture smaller so less light hits the sensor.

334 (c)

Two plano-convex lens of focal length f, when combined will give rise to a convex lens of focal length f/2

The image will be of same size if object is placed at 2f *i.e.*, at a distance f from optical centre

336 (d)

Since
$$_a\mu_g = \sqrt{2}$$
, so $_g\mu_a = \frac{\sin i}{\sin r} = \frac{1}{\sqrt{2}}$
 $\therefore \sin r = 1 \Rightarrow r = 90^\circ$

337 **(b)**

Sodium light gives emission spectrum having two yellow lines

338 (d)

Length of image $= \left(\frac{f}{f-u}\right)b$

339 (b)

At the time of sunrise and sunset, the sun is near the horizon. The rays from the sun have to travel a larger part of the atmosphere. As $\lambda_b < \lambda_r$, and

intensity of scattered light $\propto \frac{1}{\lambda^4}$, therefore, most of the blue light is scattered away, only red colour, which is least scattered enters our eyes and appears to come from the sun. Hence, the sun looks red both at the time of sunrise and sunset.

341 (d)

If a lens of focal length f is divided into two equal parts as shown in figure (i) and each has a focal length f' then

$$\frac{1}{f} = \frac{1}{f'} + \frac{1}{f'}$$
 ie, $f' = 2f$

ie, each part will have focal length 2f

Now if these parts are put in contact as in figure (2), then resultant focal length of the combination will be

$$\frac{1}{F} = \frac{1}{2f} + \frac{1}{2f}ie, F = f \text{ (initial value)}$$

For this combination,

$$\frac{1}{F} = \left(a\mu_g - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \qquad \dots \dots \dots \dots (i)$$

Now, if this combination is immersed in liquid, then

$$\frac{1}{F'} = {\binom{1}{\mu_g} - 1} \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots (ii)$$

$$\frac{F'}{f} = {\binom{a\mu_g - 1}{1\mu_g - 1}} = {\frac{(1.5) - 1)}{\left(\frac{3}{2} - 1\right)}}$$

or
$$\frac{F'}{f} = \frac{0.5}{\left(\frac{9}{8} - 1\right)} = 0.5 \times 8$$

$$\therefore F' = 0.5 \times 8 \times 10 = 40cm$$

342 (b)

The angular range is clearly twice the critical angle

343 (d)

$$\frac{1}{f} = \left(\frac{\mu_1}{\mu_2} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{f} = \left(\frac{3/2}{4/3} - 1\right) \left(\frac{1}{0.3} + \frac{1}{0.3}\right)$$
Or $\frac{1}{f} = \left(\frac{9}{8} - 1\right) \left(\frac{2}{0.3}\right)$
Or $\frac{1}{f} = \frac{1}{8} \times \frac{2}{0.3}$ or $f = 1.20$ m

344 (b)

f = -15cm, m = +2 [Positive because image is virtual]

 $\therefore m = -\frac{v}{u} \Rightarrow v - 2u. \text{ By using mirror formula}$ $\frac{1}{-15} = \frac{1}{(-2u)} + \frac{1}{u} \Rightarrow u = -7.5 \text{ cm}$

$$n = \frac{\text{Real depth}}{\text{Apparent depth}} = \frac{6}{4} = \frac{3}{2}$$

$$\frac{n_1}{u} + \frac{n_2}{v} = \frac{n_1 \sim n_2}{R}$$

$$\frac{1.5}{6} - \frac{4}{17} = \frac{1.5 - 1}{R}$$

$$R = 34 \text{ cm}$$

346 (c)

$$\delta_{\text{net}} = \delta_{\text{mirror}} + \delta_{\text{prism}}$$
= $(180 - 2i) + (\mu - 1)A$
= $(180 - 2 \times 45) + (1.5 - 1) \times 4 = 92^{\circ}$

347 (b)

In case of refraction from a curved surface, we have

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R} \Rightarrow \frac{1}{v} - \frac{2}{(-15)} = \frac{(1-2)}{-10} \Rightarrow v$$
$$= -30 \ cm$$

i.e., the curved surface will form virtual image *I* at distance of 30 *cm* from *P*. Since the image is virtual there will be no refraction at the plane surface *CD* (as the rays are not actually passing through the boundary), the distance of final image *I* from *P* will remain 30 *cm*

349 (a)

A lens made of three different materials as shown has only one focal length. Thus, for a given object there is only on image.

350 (c)

The optical fibres are used to transmit light signals from one place to another without any practical loss in the intensity of light signal. It works on the principle of total internal reflection.

351 (a)

We know that
$$\delta = i + e - A \Rightarrow e = \delta + A - i$$

= $30^{\circ} + 30^{\circ} - 60^{\circ} = 0^{\circ}$

∴ Emergent ray will be perpendicular to the face. Therefore it will make an angle of 90° with the face through which it emerges

352 (c)

Distance of jeep,
$$x = \frac{D \times d}{1.22 \times \lambda}$$

Where D = diameter of lens

d = separation between sources.

 $\Rightarrow x = \frac{(2 \times 10^{-3}) \times 1.2}{1.22 \times 5896 \times 10^{-10}}$

$$= 3337 m$$

$$\Rightarrow x = 3.34 \, km$$

$$\mu = \frac{h'}{h} \Rightarrow h' = \mu h = \frac{4}{3} \times 18 = 24 \ cm$$

354 (b)

Focal length for violet colour is minimum

357 (d)

Out of the given choices concave mirror can produce real image.

Provided the object is not placed between the pole and focus of concave mirror.

358 (b)

Speed of light is given by

$$v = \frac{c}{n} = \frac{3 \times 10^8}{1.5} = 2 \times 10^8 \text{ ms}^{-1}$$

359 (b)

Resolving power of microscope $\propto \frac{1}{\lambda}$

360 **(b)**

According to lens makers formula

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \Rightarrow \frac{1}{f} \propto (\mu - 1)$$

Since $\mu_{\text{Red}} < \mu_{\text{violet}} \Rightarrow f_v < f_r$ and $F_v < F_r$

Note: Always keep in mind that whenever you are asked to compared (greater than or less than) u, v or f you must not apply sign conventions for comparison

362 (d)

Convergence (or power) is independent of medium for mirror

363 (d)

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{60} + \frac{1}{(-20)} \Rightarrow F = -30$$

364 **(b)**

$$m = \frac{f}{f - u}$$

If m = +3, then

$$3 = \frac{-24}{-24 - u}$$

$$0r - 24 - u = -8 \text{ or } u + 24 = 8$$

Or
$$u = 8 - 24 \text{ cm} = -16 \text{ cm}$$

If m = -3, then

$$-3 = \frac{-24}{-24 - u}$$

$$u + 24 = -8$$

Or
$$u = -32$$
cm

365 (b)

The first images is due to reflection from the front surface *ie* unpolised surface of the mirror. So, only

a small fraction is the incident light energy is reflected. The second image is due to reflection from polished surface. So, a major portion of light is reflected. Thus, the second image is the brightest

366 (d)

Given focal length of concave mirror

$$f = -15 \, \text{cm}$$

$$u = -20 \text{ cm}$$

Magnification
$$m = \frac{f}{u - f} = \frac{-15}{-20 + 15}$$

$$m = 3 \text{ cm}$$

The area enclosed by the image of the wire $= m^2 = 9 \text{ cm}^2$

367 **(b**)

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$-\frac{du}{u^2} - \frac{dv}{v^2} = 0$$

or
$$-\frac{dv}{v^2} = \frac{dv}{u^2}$$

Or
$$\frac{dv}{dt} = -\frac{v^2}{u^2} \frac{du}{dt} = -\frac{10 \times 10}{30 \times 30} \times 9 \text{ ms}^{-1} = -1 \text{ ms}^{-1}$$

368 **(**a

$$\frac{f}{f-u} = \frac{1}{4} = \frac{f}{f - (-0.5)}$$

Or
$$4f = f + 0.5$$
 or $3f = 0.5$

Or
$$f = \frac{0.5}{3}$$
m = 0.17m

369 (c)

The critical angle C is given by

$$\sin C = \frac{n_2}{n_1} = \frac{\lambda_1}{\lambda_2} = \frac{3500}{7000} = \frac{1}{2} \Rightarrow C = 30^\circ$$

370 (d)

For a lens
$$m = \frac{f-v}{f} = -\frac{1}{f}v + 1$$

Comparing it with y = mx + c

Slope =
$$m = -\frac{1}{f}$$

From graph, slope of the line = $\frac{b}{c}$

Hence
$$-\frac{1}{f} = \frac{b}{c} \Rightarrow |f| = \frac{c}{b}$$

372 (d)

$$I = \frac{L}{r^2}$$

$$\Rightarrow \frac{dI}{I} = -\frac{2dr}{r} \qquad [\because L = \text{constant}]$$

$$\Rightarrow \frac{dI}{I} \times 100 = -\frac{2 \times dr}{r} \times 100 = -2 \times 1 = -2\%$$

373 (c)

The rainbow is seen as a virtual image in the form of a coloured are centered on the anti-solar point that is the point below the horizon, directly opposite the sun in the sky. When conditions are

favorable two rainbows are seen the brighter is the primary and a fainter second one with the colours reversed. Hence, both primary and secondary rainbow are virtual images.

374 (d)

$$I_A = \frac{L}{(2r)^2} \text{ and } I_B = \frac{L}{(r\sqrt{2})^2} \cos \theta$$
$$= \frac{L}{2r^2} \cdot \frac{r}{r\sqrt{2}} = \frac{L}{2\sqrt{2} r^2}$$
$$\therefore \frac{I_A}{I_B} = \frac{2\sqrt{2}}{4} = \frac{1}{\sqrt{2}}$$

375 (a)

For vacuum $t = n \lambda_o$...(i)

For air $t = (n+1)\lambda_a$...(ii)

From equation (i) and (ii) $t = \frac{\lambda}{\mu - 1} = \frac{6 \times 10^{-7}}{1.0003 - 1} \left(\mu = \frac{\lambda_o}{\lambda_o} \right)$

$$= 2 \times 10^{-3} m = 2mm$$

376 (d)

Time of exposure $\propto \frac{1}{(Aperture)^2}$

377 **(c)**

$$\frac{f_l}{f_a} = \frac{(a\mu_g - 1)}{(\mu_g - 1)} \Rightarrow f_l = \infty \text{ if } l\mu_g = 1 \Rightarrow a\mu_l = a\mu_g$$

378 (b)

Focal length of convex lens

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$R_1 = 10 \text{ cm}, R_2 = -10 \text{ cm}, \mu = 1.5 \text{ (for glass)}$$

$$\frac{1}{f} = (1.5 - 1) \left(\frac{1}{10} - \frac{1}{-10} \right)$$

$$= 0.5 \left(\frac{2}{10} \right)$$

$$f = \frac{10}{2 \times 0.5}$$

$$\Rightarrow f = 10 \text{ cm}$$

∴ Focal length of concave mirror

$$= 10 \text{ cm}$$

 \therefore Radius of curvature = $2 \times 10 = 20$ cm

379 (a)

$$u = -25 \text{ cm}, v = +75 \text{ cm}$$

 $\Rightarrow \frac{1}{f} = \frac{1}{+75} - \frac{1}{-25} \Rightarrow f = +18.75 \text{ cm}$; convex lens

We have

$$\sin C = \frac{1}{\mu}$$
But $\mu = \frac{v_2}{v_1} = \frac{1480}{340}$

$$\therefore \sin C = \frac{340}{1480}$$
Or $C = \sin^{-1}\left(\frac{340}{1480}\right)$

381 (b

 $m = 1 + \frac{D}{f} = 1 + DP$ [m increases with P]

382 (d

For first lens, $\mu_1 = -30cm$, $f_1 = 10cm$

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$
or $\frac{1}{v} = \frac{1}{f} + \frac{1}{u}$
or $\frac{1}{v} = \frac{1}{10} - \frac{1}{30} = \frac{1}{15}$
or $v = 15$ cm

Therefore, image formed by convex lens (L_1) is at point I_1 and acts as virtual object for concave lens (L_2) . f_1 f_2 = 20 cm f_3

The image I_1 is formed at focus of concave lens (as shown) and so emergent rays will be parallel to the principle axis. For lens L_2 , $\mu_2=15\text{-}5=10$ cm, f_2 =-10cm. These parallel rays are incident on the third convex lens (L_3) and will be brought to convergence at the focus of the lens (L_3) Hence, distance of final image from third lens L_3 $v_2=f_3=30$ cm

383 (c)

For no deviation,

$$(\mu - 1)A + (\mu' - 1)A' = 0$$

$$\Rightarrow A' = -\frac{(\mu - 1)A}{(\mu' - 1)} = \frac{(1.54 - 1)4^{\circ}}{(1.72 - 1)} = -3^{\circ}$$

Negative sign implies that two prisms should be connected in opposition.

384 **(b)**

When an object is placed in front of such a lens, the rays are first of all refracted from the convex surface and again refracted from convex surface. Let f_1 , f_m be focal lengths of convex surface and mirror (plane polished surface) respectively, then effective focal length is

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_m} + \frac{1}{f_1} = \frac{2}{f_1} + \frac{1}{f_m}$$

Since

$$f_m = \frac{R}{2} = \infty$$
1 2

$$\therefore \frac{1}{F} = \frac{2}{f_1}$$

From lens formula

$$\frac{1}{f_1} = (\mu - 1) \left(\frac{1}{R}\right)$$

$$\therefore \frac{1}{F} = \frac{2(\mu - 1)}{R}$$

$$\Rightarrow F = \frac{R}{2(\mu - 1)}$$
or $R_{eq} = 2F = \frac{R}{(\mu - 1)}$

385 (b)

When a ray of light passes from glycerine (denser, $\mu = 1.47$) to water (rarer, $\mu = 1.33$) the angle of refraction (r) is greater than angle of incidence (i), then from Snell's law

$$\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1} < 1$$

When $r = 90^{\circ}$, corresponding angle of incidence is known as critical angel, ie, $i = \theta_C$

$$=\sin^{-1}\left(\frac{1.33}{1.47}\right)$$

$$\theta_{C} = 64^{\circ}48'$$

386 (b)

Note that two refractive indices are involves. Therefore, two images will be formed

389 (a)

Image formed by convex mirror is virtual for real object placed anywhere

390 (a)

Wavelength in vacuum,

$$\lambda = \frac{3 \times 10^8}{5 \times 10^{14}} \times 10^{10} \text{Å} = 0.6 \times 10^4 \text{Å}$$
= 6000 Å

Now, $\mu = \frac{\lambda}{\lambda'}$

Or $\lambda' = \frac{\lambda}{\mu} = \frac{6000}{1.5} \text{Å} = 4000 \text{Å}$

391 (a)

When two lenses are separated by some distance x, then equivalent power

$$P = P_1 + P_2 - xP_1P_2$$

$$\therefore P = 5 + 5 - x \times 5 \times 5$$

$$or P = 10 - 25x$$

Power *P* will be negative, if 10-25x will be negative

$$ie, \quad 25x > 10$$

$$or \quad x > \frac{10}{25}$$

or
$$x > \frac{10}{25} \times 100 \ cm$$

or
$$x > 40$$
 cm

394 **(b)**

Since rays after passing through the glass slab just suffer lateral displacement hence we have angle between the emergent rays as α

395 **(c**)

 $\delta \propto (\mu - 1) \Rightarrow \mu_R$ is least so δ_R is least

396 (a

The combined focal length of plano-convex lens 1 1 1

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

Given, $f_1 = \infty(for\ plane\ surface), f_2 = f(say)$

$$\therefore \frac{1}{F} = \frac{1}{\infty} + \frac{1}{f}$$

$$\Rightarrow F = 1$$

Now when concave lens of same focal length is joined to first lens, then combined focal length

$$\frac{1}{F'} = \frac{1}{F_1} + \frac{1}{F_2}$$

$$= \frac{1}{f} - \frac{1}{f} \qquad (\because F_1 = f, F_2 = -f)$$

$$= 0$$

$$F' = \infty$$

Thus, the image can be focused on infinity (∞) or focus shifts to infinity.

397 (b)

In compound microscope objective forms real image while eye piece forms virtual image

398 (a)

For viewing far objects, concave lenses are used and for concave lens

 $u = \text{wants to see} = -60 \text{cm}; v = \text{can see} = -15 \text{ cm so from } \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow f = -20 \text{ cm}$

399 (a)

According to New Cartesian sign convention, Object distance $u=-15\ cm$

Focal length of a concave lens, $f = -10 \ cm$ Height of the object $h_o = 2.0 \ cm$

According to mirror formula, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-10} - \frac{1}{-15} \Rightarrow v = -30 \ cm$$

This image is formed 30 cm from the mirror on the same side of the object. It is a real image

Magnification of the mirror, $m = \frac{-v}{u} = \frac{h_I}{h_O}$

$$\Rightarrow \frac{-(-30)}{-15} = \frac{h_I}{2} \Rightarrow h_I = -4 \ cm$$

Negative sign shows that image is inverted The image is real, inverted, of size 4 cm at a distance 30 cm in front of the mirror

401 (a)

For the objective,
$$\frac{1}{v_o} - \frac{1}{-1/3.8} = \frac{1}{1/4}$$

Or $\frac{1}{v_o} + 3.8 = 4$ or $\frac{1}{v_o} = 0.2 = \frac{1}{5}$
or $v_0 = 5$ cm
Now, $M_0 = \frac{5}{\frac{1}{3.8}} = -19$
Again, $M = M_O \times M_e$
 $-95 = -19 \times M_e$ or $M_e = \frac{95}{19} = 5$

402 (b)

Frequency does not change with medium but wavelength and velocity decrease with the increase in refractive index

403 **(b**)

$$f = \frac{R}{\mu - 1} = \frac{10}{(1.5 - 1)} = 20 \text{ cm}$$

$$\frac{1}{f} = \frac{2}{f_1} + \frac{1}{f_m}, f_m = \infty \Rightarrow f = \frac{f_1}{2} = \frac{20}{2} = 10 \text{ cm}$$

404 (b)

$$f = \frac{f_1 f_2}{f_1 + f_2} = \frac{10(-10)}{10 + (-10)} = \frac{-100}{10 - 10} = \infty$$

405 (c

$$\frac{1}{f} = (\mu - 1) \left(\frac{2}{R}\right) \text{ or } f = \frac{R}{2(\mu - 1)}$$

Now f > R

$$\therefore \frac{R}{2(\mu - 1)} > R$$

Or
$$\frac{1}{2(\mu-1)} > 1$$
 or $2(\mu-1) < 1$

Or
$$\mu - 1 < \frac{1}{2}$$
 or $\mu < \left(1 + \frac{1}{2}\right)$

Or $\mu < 1.5$

406 (c)

$$n = \frac{f}{f + u}$$

$$f + u = \frac{f}{n}$$

$$\text{Or } u = \frac{f}{n} - f = \left(\frac{1 - n}{n}\right) f$$

$$\text{Or } u = -\left(\frac{n - 1}{n}\right) f, |u| = \frac{n - 1}{n} f$$

407 (a)

According to mirror formula

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

Here u = -9 m and f = -1 m

$$\frac{1}{(-1)} - \frac{1}{(-9)} = \frac{1}{v}$$
$$\Rightarrow v = -\frac{9}{8} \text{m}$$

As the object moves at a constant speed of 5 m/s after 1 s the new position of image is

$$u' = -9 \text{ m} + 5 \text{ m} = -4 \text{ m}$$

$$\therefore \frac{1}{(-1)} - \frac{1}{(-4)} = \frac{1}{v'}$$

$$\Rightarrow v' = -\frac{4}{3}$$
 m

The shift in the position of image in 1 s is

$$v - v' = -\frac{9}{8} + \frac{4}{3} = \frac{1}{5}$$

∴ Average speed of image = $\frac{1}{5}$ m/s

408 (d)

The image of object at infinity should be formed at $100 \ cm$ from the eye

$$\frac{1}{f} = \frac{1}{\infty} - \frac{1}{100} = -\frac{1}{100}$$
So the power = $\frac{-100}{100} = -1$ D

[Distance is given in cm but $P = \frac{1}{f}$ in metres]

409 (b)

$$\mu = \cot \frac{A}{2} = \frac{\sin(\frac{A+\delta m}{2})}{\sin A/2}$$

$$or \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} = \frac{\sin(\frac{A+\delta m}{2})}{\sin A/2}$$

$$or \sin(90^{\circ} - \frac{A}{2}) = \sin(\frac{A+\delta m}{2})$$

$$or 90^{\circ} - \frac{A}{2} = (\frac{A+\delta m}{2})$$

$$or 180^{\circ} - A = A + \delta m$$

$$\delta m = 180^{\circ} - 2A = \pi - 2A$$

410 (c)

Speed of light in air

Speed of light in aqueous humor

Wavelength of light in air

= Wavelength of light in aqueous humor

$$\Rightarrow \frac{v_1}{v_2} = \frac{\lambda_1}{\lambda_2}$$

Or
$$v_2 = \frac{\lambda_2}{\lambda_1} \times v_1 = \frac{474}{633} \times 3 \times 10^8$$

= $2.25 \times 10^8 \text{ms}^{-1}$

411 (a)

$$M = \frac{f_o}{f_e}$$
, $10 = \frac{f_o}{20}$, $f_0 = 200$ cm

412 (a)

$$I \propto \frac{1}{r^2} \Rightarrow \frac{I_2}{I_1} = \frac{r_1^2}{r_2^2} = \frac{60^2}{180^2} = \frac{1}{9}$$

413 **(b**)

Here
$$i = r$$

 $r' = 90^{\circ} - r$
So, $\mu = \frac{\sin r}{\sin r} = \frac{\sin(90^{\circ} - r)}{\sin r}$
 $\mu = \frac{\cos r}{\sin r} = \frac{1}{\tan r}$
But $\mu = \frac{1}{\sin c}$

Where C is the critical angle.

So,
$$\frac{1}{\sin C} = \frac{1}{\tan r}$$

 $\Rightarrow \sin C = \tan r$

Or
$$C = \sin^{-1}(\tan r)$$

414 (c)

$$m = m_o \times m_e \Rightarrow m = m_o \times \left(1 + \frac{D}{f_e}\right)$$

 $\Rightarrow 100 = 10 \times \left(1 + \frac{25}{f_e}\right) \Rightarrow f_e = \frac{25}{9} cm$

415 (a)

$$n = \frac{360^\circ}{72^\circ} = 5$$

Note that $\frac{360}{\theta}$ is odd and object line asymmetrically

416 (d)

$$f = \frac{1.6}{2} \text{m} = 0.8 \text{m}, u = -1 \text{ m}$$

$$\frac{1}{v} = \frac{1}{0.8} - \frac{1}{-1} = \frac{10}{8} + 1 = \frac{18}{8} = \frac{9}{4}$$
Or $v = \frac{4}{9} \text{m}$

417 (a)

$$\frac{1}{f_a} = (\mu - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

$$= (1.5 - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots \dots \dots \dots (i)$$

$$and \frac{1}{f_m} = \frac{\mu_g - \mu_m}{\mu_m}(\frac{1}{R_1} - \frac{1}{R_2})$$

$$\frac{1}{f_m} = \left(\frac{1.5}{1.6} - 1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots \dots (ii)$$
Thus,
$$\frac{f_m}{f_a} = \frac{(1.5 - 1)}{\left(\frac{1.5}{1.6} - 1\right)} = -8$$

$$f_m = -8 \times f_a$$

$$= -8 \times \frac{-1}{5} \qquad \left(\because f_a = \frac{1}{p} = -\frac{1}{5}m\right)$$

$$= 1.6 m$$

$$\because P_m = \frac{\mu}{f_m}$$

$$= \frac{1.6}{1.6} = 1D$$

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$\sin\left(\frac{60^\circ + \delta_m}{2}\right)$$

$$\sqrt{2} = \frac{\sin\left(\frac{60^{\circ} + \delta_m}{2}\right)}{\sin\frac{60^{\circ}}{2}}$$

$$\frac{1}{\sqrt{2}} = \sin\left(\frac{60^\circ + \delta_m}{2}\right)$$

Or
$$\sin 45^\circ = \sin \left(\frac{60^\circ + \delta_m}{2} \right)$$

$$\delta_m = 30^{\circ}$$

Or
$$i = \frac{A + \delta_m}{2}$$

$$=\frac{60+30}{2}=\frac{90}{2}=45^{\circ}$$

419 (c)

$$\mu_g \sin \theta_c = \mu_1 \sin 90^\circ$$

Or
$$\mu_g \sin \theta_c = 1$$

When water is poured,

 $\mu_w \sin r = \mu_s \sin \theta_c$ or $\mu_w \sin r = 1$

Again, $\mu_a \sin \theta = \mu_w \sin r$

Or
$$\mu_a \sin \theta = 1$$

Or
$$\sin \theta = 1$$
 or $\theta = 90^{\circ}$

420 (d)

Form displacement method size of object, $O = \frac{1}{2}$

$$\sqrt{l_1 l_2}$$

Here,
$$0 = 3$$
 cm, $l_1 = 9$ cm

$$3 = \sqrt{9I_2}$$

Or
$$I_2 = 1$$
 cm

421 (a)

Shift =
$$t\left(1-\frac{1}{\mu}\right)$$

$$1 = 3\left(1 - \frac{1}{u}\right)$$
 or $\frac{1}{3} = 1 - \frac{1}{u}$

Or
$$\frac{1}{\mu} = 1 - \frac{1}{3} = \frac{2}{3}$$
 or $\mu = \frac{3}{2} = 1.5$

422 (a)

$$A(\mu_v - \mu_r) + A'(\mu_v' - \mu_r') = 0^\circ \Rightarrow A' = 5^\circ$$

423 (d

$$P_1 = \frac{100}{20} = 5 D, P_2 = \frac{100}{25} = 4D$$

Effective power $P = P_1 + P_2$

$$= 5 + 4 = 9 D$$

424 (b)

Lens-maker's formula is given by

$$\frac{1}{f} = \left(a\mu_g - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$
 ... (i)

If the lens is immersed in a liquid of refractive index μ_1 then

$$\frac{1}{f_1} = \left({}_{l}\mu_g - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$
 ... (ii)

Here, $l\mu_g$ is refractive index of glass w.r.t liquid

Dividing Eq. (i) by Eq. (ii), we have

$$\frac{f_1}{f} = \frac{\left(a\mu_g - 1\right)}{\left(\mu_g - 1\right)}$$

$$\Rightarrow \frac{f_1}{f} = \left(\frac{1.5 - 1}{\frac{1.5}{1.25} - 1}\right)$$

$$\Rightarrow \frac{f_1}{f} = \frac{0.5 \times 1.25}{0.25} = 2.5$$

Hence, focal length increases by a factor of 2.5.

425 (d)

$$v = -15cm, u = -300cm$$

From lens formula
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\Rightarrow \frac{1}{f} = \frac{1}{-15} - \frac{1}{-300} = \frac{-19}{300}$$

$$\Rightarrow f = \frac{-300}{19} = -15.8 \ cm$$

and power
$$P = \frac{100}{f_{in\,cm}} = \frac{-100 \times 19}{300}$$

$$= -6.33 I$$

$$E_0 = \frac{I}{r^2} = \frac{I}{(4)^2} = \frac{I}{16}$$

$$E_p = \frac{I\cos\theta}{r'^2} = \frac{I\times(415)}{(5)^2}$$

$$=\frac{4I}{12^{5}}$$

$$\therefore \frac{E_0}{E_n} = \frac{l}{16} \times \frac{125}{4l} = \frac{125}{64}$$

429 (a)

$$\mu = \frac{h}{h'} \Rightarrow h' = \frac{8}{4/3} = 6 m$$

430 (a)

As there is no deflection between medium 1 and 2. Therefore, $\mu_1=\mu_2$

431 (d)

$$\frac{I'}{I} = \frac{40 \times 40}{50 \times 50} = \frac{16}{25}$$

$$1 - \frac{I'}{I} = 1 - \frac{16}{25} = \frac{9}{25}$$

or
$$\frac{I-I'}{I} \times 100 = \frac{9}{25} \times 100 = 36\%$$

432 (b)

According to Cartesian sign convention

$$u = -40 \text{ cm}, R = -20 \text{ cm}$$

$$\mu_1 = 1$$
, $\mu_2 = 1.33$

Applying equation for refraction through

spherical surface, we get

$$\frac{\mu_2}{\mu_2} - \frac{\mu_1}{\mu_2} = \frac{\mu_2 - \mu_2}{\mu_2}$$

$$\frac{1.33}{v} - \frac{1}{-40} = \frac{1.33}{-20}$$

After solving, v = -32 cm

The magnification is $m = \frac{h_2}{h_1} = \frac{\mu_1 v}{\mu_2 u}$

$$\therefore \frac{h_2}{1} = -\frac{1(32)}{1.33(-40)}$$

Or
$$h_2 = 0.6 \text{ cm}$$

The positive sign shows that the image is erect

433 (c)

Power of spectacles, P = 2D

Since, power is positive so lens used is convex which is used for the purpose of removing hypermetropia.

434 (a)

Refractive index of diamond is

$$\mu = \frac{\text{velocity of light in air}}{\text{velocity of light in diamond}}$$

$$2 = \frac{3.0 \times 10^{10}}{\text{velocity of light in diamond}}$$

So, velocity of light in diamond is

$$= \frac{3.0 \times 10^{10}}{2} = 1.5 \times 10^{10} \text{cms}^{-1}$$

435 (c)

$$\mu_1 = 2, \mu_2 = \frac{3}{2}$$

$$2\sin i \ge \frac{3}{2}\sin 90^\circ \Rightarrow \sin i \ge \frac{3}{4} \Rightarrow i \ge \sin^{-1}\left(\frac{3}{4}\right)$$

436 (a)

$$v = 1 cm, R = 2 cm$$

By using

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

$$\frac{1}{-1} - \frac{1.5}{u} = \frac{1 - 1.5}{-2}$$

$$\Rightarrow u = -1.2 \text{ cm}$$

437 (a)

Lens maker's formula

$$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Where, $R_2 = \infty$, $R_1 = 0.3$ m

$$\therefore \frac{1}{f} = \left(\frac{5}{3} - 1\right) \left(\frac{1}{0.3} - \frac{1}{\infty}\right)$$
$$\Rightarrow \frac{1}{f} = \frac{2}{3} \times \frac{1}{0.3}$$

Or
$$f = 0.45 \text{ m}$$

438 **(b)**

For an equilateral prism, angle of prism of refracting angle $A = 60^{\circ}$

Here,
$$\delta_m = A = 60^\circ$$

: Refractive index,

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}} = \frac{\sin\left(\frac{60^\circ + 60^\circ}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)}$$
$$= \frac{\sin 60^\circ}{\sin 30^\circ} = \frac{\sin 60^\circ}{\cos 60^\circ}$$
$$= \tan 60^\circ = \sqrt{3}$$

439 (a)

Effectively there is no deviation or dispersion

440 (c)

$$E = \frac{I\cos\theta}{r^2} \Rightarrow E = \frac{Ih}{r^3}$$

Or
$$E \propto \frac{1}{r^3}$$

441 (c

Distance of object from mirror = $15 + \frac{33.25}{1.33} =$

40 cm

Distance of image from mirror = $15 + \frac{25}{1.33} =$

33.8 cm

For the mirror, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$

$$\therefore \frac{1}{-33.8} + \frac{1}{-40} = \frac{1}{f}$$

$$f = -18.3 \text{ cm}$$

: Most suitable answer is (c).

442 (a)

Applying Snell's law between the surfaces A and B

 $n_1 \sin i = n_2 \sin r_1 \qquad \dots (i)$

Again applying Snell's law between surfaces *B* and *C*

$$n_2 \sin r_1 = n_3 \sin r_2 \qquad \dots (ii)$$

From Eqs. (i) and (ii), we get

 $n_1 i s n i = n_3 s i n r_2$

Here,
$$r_2 = 90^\circ$$

$$n_1 \sin i = n_3$$

$$\Rightarrow \sin i = \frac{n_3}{n_1}$$

443 (b)

When an object is placed between 2f and f (focal length) of the diverging lens, the image is virtual, erect and diminished as shown in the graph. To calculate the distance of the image from the lens, we apply

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{-20} = \frac{1}{v} - \frac{1}{30}$$
$$\Rightarrow v = -\frac{(20)(30)}{20 + 30}$$

= -12 cm (to the left to the diverging lens.)

For a telescope, magnification when final image is formed at infinity

$$m_{\infty} = \frac{f_0}{f_e} = \frac{100}{10} = 10$$

A simple microscope is just a convex lens with object lying between optical centre and focus of the lens

447 (d)

For real image m = -2

$$\therefore m = \frac{f}{u+f} \Rightarrow -2 = \frac{f}{u+f} = \frac{20}{u+20} \Rightarrow u$$
$$= -30 cm$$

448 (c)

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

For biconvex lens $R_2 = -R_1$ $\therefore \frac{1}{f} = (\mu - 1)(\frac{2}{R})$

Given $R = \infty$: $f = \infty$, so no focus at real distance

449 (b)

Erect and enlarged image can produced by

$$\frac{1}{0} = \frac{f}{f - u} \Rightarrow \frac{+3}{+1} = \frac{f}{f - (-4)} \Rightarrow f = -6 \text{ cm}$$
$$\Rightarrow R = 2f = -12 \text{ cm}$$

451 (a)

The real depth = μ [apparent depth] \Rightarrow In first case, the real depth $h_1 = \mu(b-a)$ Similarly in the second case, the real depth h_2 $\mu(d-c)$

Since $h_2 > h_1$, the difference of real depths $= h_2 - h_1 = \mu(d - c - b + a)$

Since the liquid is added in second case,

$$h_2 - h_1 = (d - b) \Rightarrow \mu = \frac{(d - b)}{(d - c - b + a)}$$

453 (b)

Optical path $\mu x = constant$

$$i.e., \mu_1 x_1 = \mu_2 x_2$$

 $\Rightarrow 1.53 \times 4 = \mu_2 \times 4.5$

$$\Rightarrow \mu_w = \frac{1.53 \times 4}{4.5} = 1.36$$

454 (a)

Focal length of converging lens f = +10 cm

$$u = -9 \text{ cm}$$

From lens formula

$$\begin{aligned} &\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \\ ∨ \quad \frac{1}{v} = \frac{1}{f} + \frac{1}{u} = \frac{1}{10} + \frac{1}{(-9)} \\ &\frac{1}{v} = \frac{1}{10} - \frac{1}{9} \\ ∨ \quad v = -90 \ cm \end{aligned}$$

Magnification, $m = \frac{v}{v} = \frac{-90}{-9} = 10 \text{m}$

: Apparent area of card through lens $= 10 \times 10 \times 1 \times 1 = 100 \text{ mm}^2 = 1 \text{ cm}^2$

455 (b)

For the relaxed eye, magnifying power is

$$M = -\frac{v_0}{u_0} \frac{D}{f_e}$$

$$\therefore -45 = -\frac{v_0}{u_0} \times \frac{25}{5}, \frac{v_0}{u_0} = 9$$

For objective lens, image is real

$$\therefore v_0 = +v_0, u_0 = -\frac{v_0}{9}$$

Given,
$$f_0 = 1 \text{ cm}$$

Form $\frac{1}{v_0} - \frac{1}{u_0} = \frac{1}{f_0}$

$$\frac{1}{v_0} + \frac{9}{v_0} = \frac{1}{1}$$
; $v_0 = 10$ cm

Length of the tube = $v_0 + f_e = 10 + 5 = 15$ cm

456 (c)

Total deviation

$$= (180^{\circ} - 2\alpha) + (180^{\circ} - 2\beta)$$

$$=360^{\circ}-2(\alpha+\beta)$$

But
$$90^{\circ} - \alpha + 90^{\circ} - \beta + \theta = 180^{\circ}$$

Or
$$\theta = \alpha + \beta$$

∴ Total deviation = $360^{\circ} - 2\theta$

457 (c)

If eye is kept at a distance d then MP = $\frac{L(D-d)}{f_0f_e}$, MP decreases

When f_1 and f_2 are focal lengths of lenses combined together, image formation takes place as follows

From lens formula

$$\frac{1}{v'} - \frac{1}{u} = \frac{1}{f_1} \qquad \dots \dots \dots (i)$$

$$\frac{1}{v} - \frac{1}{v'} = \frac{1}{f_2} \qquad \dots \dots (ii)$$

Adding Eqs. (i) and (ii), we get

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$$

If this lens is replaced by a single lens, then focal length of combination is

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u}$$

$$\Rightarrow F = \frac{f_1 f_2}{f_1 + f_2}$$

Here we treat the line on the objective as the object and the eyepiece as the lens

Hence
$$u = -(f_0 + f_0)$$
 and $f = f_0$

Hence
$$u=-(f_o+f_e)$$
 and $f=f_e$
Now $\frac{1}{v}-\frac{1}{-(f_o+f_e)}=\frac{1}{f_e}$

Solving we get $v = \frac{(f_o + f_e)f_e}{f_o}$

Magnification =
$$\left|\frac{v}{u}\right| = \frac{f_e}{f_o} = \frac{\text{Image size}}{\text{Object size}} = \frac{l}{L}$$

: Magnification of telescope in normal adjustment

$$=\frac{f_o}{f_e}=\frac{L}{l}$$

460 (d)

$$\frac{I}{O} = \frac{v}{u}$$

$$\frac{I}{15} = \frac{-25}{-10}$$

 $I = 15 \times 2.5 \text{ cm} = 37.5 \text{ cm}$

461 (d)

$$\mu = \frac{c_a}{c_w} = \frac{t_w}{t_a} \Rightarrow t_w = \frac{25}{3} \times \frac{4}{3} = 11\frac{1}{9} = 11 \text{ min } 6 \text{ s}$$

Wavelength of a certain colour in air λ_{air} =

Wavelength of a certain colour in glass of refractive index $\mu = 1.5$

$$\therefore \lambda_{glass} = \frac{\lambda_{air}}{\mu_{glass}} = \frac{600}{1.5}$$

$$\lambda_{glass} = 400 \text{ nm}$$

Also,
$$v_{\text{glass}} = \frac{v_{\text{air}}}{\mu_{\text{glass}}} = \frac{3 \times 10^8}{1.5}$$

$$v_{\rm glass} = 2.0 \times 10^8 \, \rm ms^{-1}$$

463 (a)

$$\frac{1}{F} = \frac{1}{+18} + \frac{1}{(-19)} \Rightarrow F = -18 \ cm \ (i. e., concave lens)$$

In minimum deviation $i = e = 30^{\circ}$, so angle between emergent ray and second refracting surface is $90^{\circ} - 30 = 60^{\circ}$

465 (b)

Critical angle C is equal to incident angle if ray reflected normally $: C = 90^{\circ}$

466 (b)

Red light is used in danger signals so that the danger signals can be seen distinctly up to large distances. The light used in the danger signals should not get scattered much, while passing through the atmosphere. Since, the red colour is scattered through a small amount due to its longer wavelength, the danger signals make use of red light.

467 (a)

For concave mirror

$$u = -\frac{15}{2}$$
 cm, $v = ?$
 $f = -\frac{10}{2}$ cm = -5 cm

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-5} - \frac{1}{-15/2}$$
$$= -\frac{1}{2} + \frac{2}{2} = -\frac{1}{2}$$

Or
$$v = -15 \, \text{cm}$$

Clearly, the position of the final image is on the pole of the convex mirror

468 (b)

Here the requirement is that i > c

$$\Rightarrow \sin i > \sin c \Rightarrow \sin i > \frac{\mu_2}{\mu_1}$$
 ... (i)

From Snell's law
$$\mu_1 = \frac{\sin \alpha}{\sin r}$$
 ...(ii)

$$r + i = 90^{\circ} \Rightarrow r = (90 - i)$$

Hence from equation (ii)

$$\sin \alpha = \mu_1 \sin(90 - i)$$

$$\Rightarrow \cos i = \frac{\sin \alpha}{\mu_1}$$

$$\sin i = \sqrt{1 - \cos^2 i} = \sqrt{1 - \left(\frac{\sin \alpha}{\mu_1}\right)^2} \dots (iii)$$

From equation (i) and (iii) $\sqrt{1 - \left(\frac{\sin \alpha}{\mu_1}\right)^2} > \frac{\mu_2}{\mu_1}$

$$\Rightarrow \sin^2 \alpha < (\mu_1^2 - \mu_2^2) \Rightarrow \sin \alpha < \sqrt{\mu_1^2 - \mu_2^2}$$

$$\alpha_{\max} = \sin^{-1} \sqrt{\mu_1^2 - \mu_2^2}$$

469 (a)

$$\frac{I}{d} = \frac{f}{u}$$

Or
$$I = \frac{d}{u}f$$
 or $I = \theta f$

470 (d)

Resolving power =
$$\frac{d}{1.22 \,\lambda} = \frac{0.1}{1.22 \times 6000 \times 10^{-10}}$$

$$\equiv 1.36 \times 10^5 radian$$

471 (b)

For glass-water interface $g\mu_w = \frac{\sin i}{\sin r}$

For water air interface $_{w}\mu_{a}=\frac{\sin \theta}{\sin 90^{\circ}}$

$$\Rightarrow {}_{g}\mu_{w} \times {}_{w}\mu_{a} = \frac{\sin i}{\sin r} \times \frac{\sin r}{\sin 90^{\circ}} = \sin i$$

or
$$\frac{\mu_w}{\mu_g} \times \frac{\mu_a}{\mu_w} = \sin i$$

$$\Rightarrow \mu_{\rm g} = \frac{1}{\sin i}$$

473 (d)

If initially the objective (focal length F_o) forms the image at distance v_o then $v_o = \frac{u_o f_o}{u_o - f_o} = \frac{3 \times 2}{3 - 2} = 6 cm$

$$\frac{1}{F_o} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3} + \dots = \frac{1}{f_1} + \frac{1}{F_o'}$$

$$\left\{ \text{where } \frac{1}{F_o'} = \frac{1}{f_2} + \frac{1}{f_3} + \dots \right\}$$

So if one of the lens is removed, the focal length of the remaining lens system

$$\frac{1}{F_o'} = \frac{1}{F_0} - \frac{1}{f_1} = \frac{1}{2} - \frac{1}{10} \Rightarrow F_o' = 2.5 \text{ cm}$$

This lens will form the image of same object at a distance $v_o{'}$ such that

$$v'_o = \frac{u_o F'_o}{u_o - F'_o} = \frac{3 \times 2.5}{(3 - 2.5)} = 15 \text{ cm}$$

So to refocus the image, eye-piece must be moved by the same distance through which the image formed by the objective has shifted i. e. 15 - 6 =9 cm

474 (b)

Due to high refractive index its critical angle is very small so that most of the light incident on the diamond is total internally reflected repeatedly and diamond sparkles

475 (a)

It is possible when object kept at center of curvature.

$$u = v$$

$$u = 2f, v = 2f.$$

476 (a)

The following ray diagram shows the formation of image by a compound microscope.

Given, $f_e = 10$ cm, $f_0 = 4$ cm, $u_0 = -5$ cm, D = 20

For objective lens

$$\frac{1}{f_0} = \frac{1}{v_0} - \frac{1}{u_0}$$

$$\frac{1}{4} = \frac{1}{v_0} - \frac{1}{-5}$$

$$\Rightarrow \frac{1}{v_0} = \frac{1}{4} - \frac{1}{5} = \frac{1}{20}$$

$$\Rightarrow v^0 = 20cm$$

Magnification $M = -\frac{v_0}{u_0} = \left(1 + \frac{D}{f_e}\right)$

$$= -\frac{20}{-5} \left(1 + \frac{20}{10} \right) = 4(1+2) = 12$$

477 (c)

$$I_1 = \frac{L}{r_1^2} = \frac{L}{16}$$
 and $I_2 = \frac{L}{r_2^2} = \frac{L}{9}$

% increase in illuminance

$$= \frac{I_2 - I_1}{I_1} \times 100 = \left(\frac{16}{9} - 1\right) \times 100 \approx 78\%$$

478 (a)

For lens u = wants to see = -30 cm

And v = cab see = -10 cm

$$\therefore \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{-10} - \frac{1}{(-30)} \Rightarrow f = -15 \text{ cm}$$

480 (b)

$$r = f tan\theta$$

Or $r \propto f$

$$\therefore \pi r^2 \propto f^2$$

481 (c)

$$\frac{f_l}{f_a} = \frac{a\mu_g - 1}{l\mu_g - 1} = \frac{a\mu_g - 1}{\frac{a\mu_g}{a\mu_l} - 1} \Rightarrow \frac{f_1}{2} = \frac{1.5 - 1}{\frac{1.5}{1.25} - 1} \Rightarrow f_1$$

$$= 5cm$$

483 (b)

Several images will be formed but second image will be brightest

484 (b)

$$n = \frac{360^{\circ}}{\theta} - 1$$

$$3 = \frac{360^{\circ}}{\theta} - 1$$

$$\theta = 90^{\circ}$$

485 (a)

For a microscope $|m| = \frac{v_o}{u_o} \times \frac{D}{u_e}$ and $L = v_o + u_e$

For a given microscope, with increase in L, u_e will increase and hence magnifying power (m) will decrease

486 (d)

$$f = \frac{1}{(\mu - 1)}$$
 and $\mu \propto \frac{1}{\lambda}$. Hence $f \propto \lambda$ and $\lambda_r > \lambda_v$

488 (a)

$$D_F = \frac{d^2}{\lambda}$$

$$D_F = \frac{3 \times 10^{-3} (3 \times 10^{-3})}{500 \times 10^{-9}} = \frac{90}{5} \text{m} = 18 \text{m}$$

489 (b)

When object is in rarer medium and observer is in denser medium.

Normal shift, d = (n-1)h

Where h = real depth

Here, h = y

Now, apparent depth or the apparent height of the bird from the surface of the water = y + (n - 1)

$$1)y = ny$$

The total distance of the bird as estimated by fish isx + ny.

490 (a)

$$\mu = \frac{h}{h'} \Rightarrow h' = \frac{h}{n}$$

491 (d)

Given refracting angle of prism P

$$A_P = 3^{\circ}$$

And refractive index of prism P

$$\mu_P = 1.5$$

And refractive index of prism Q

$$\mu = 1.6$$

$$(\mu_P - 1)A_P = (\mu_0 - 1)A_O$$

$$(1.5-1)3^{\circ} = (1.6-1)A_{0}$$

Or
$$0.5 \times 3 = 0.6 \times A_0$$

Or
$$A_Q = \frac{0.5 \times 3}{0.6}$$

Or
$$A_0 = 2.5^{\circ}$$

492 (a)

The communication using optical fibres is based on the principle of total internal reflection.

493 (d)

From figure it is clear that $\angle e = \angle r_2 = 0$

From
$$A = r_1 + r_2 \Rightarrow r_1 = A = 45^{\circ}$$

$$\therefore \mu = \frac{\sin i}{\sin r_1} = \frac{\sin 60}{\sin 45} = \sqrt{\frac{3}{2}}$$

Also from $i + e = A + \delta \Rightarrow 60 + 0 = 45 + \delta \Rightarrow \delta = 15^{\circ}$

494 (a)

For a given prism, the angle of deviation depends upon the angel of incidence of the light rays falling on the prism

Taking triangle F PQR, we have

$$S = \angle FQR + \angle FRQ$$

Since, $\triangle AQR$ is an equilateral triangle, therefore,

$$\angle FQR = \frac{60^{\circ}}{2} = 30^{\circ} = \angle FRQ$$

$$\therefore \delta = 30^{\circ} + 30^{\circ} = 60^{\circ}$$

Hence, angle of deviation of the ray is 60°.

495 (d)

Think in terms of rectangular hyperbola

496 (b)

For achromatic combination
$$\frac{f_1}{f_2} = -\frac{\omega_2}{\omega_1} = -\frac{0.036}{0.024} = -\frac{3}{2}$$
 and $\frac{1}{f_1} - \frac{1}{f_2} = \frac{1}{90}$

Solving above equations we get $f_1 = 30$ cm, $f_2 =$ -45cm

497 (a)

Magnifying power of a telescope having objective of focal length (f_0) and image distance (u_e) is

$$M = -\frac{f_0}{u_e}$$

To see with relaxed eye final image should be formed at infinity.

The distance between the objective and eyepiece is so adjusted the image is formed at the focus of the eyepiece.

Substituting $v_e = f_e$, we get

$$|M| = \frac{f_0}{f_e} = \frac{F_1}{F_2}$$

Incandescent electric lamp gives continuous emission spectrum. Mercury and sodium vapour lamp give line emission spectrum

499 (b)

From the following ray diagram it is clear that $\delta = (\alpha - \beta) + (\alpha - \beta) = 2(\alpha - \beta)$

501 (a)

Resolving limit of eye is one minute (1')

502 (a)

$$\begin{split} &\frac{1}{f} = \left(\frac{\mu_g}{\mu_m} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) \\ &\text{Here } f = \infty \quad \text{So } \frac{1}{f} = 0 \ \therefore \ \mu_g = \mu_m \end{split}$$

503 (b)

For a compound microscope $f_{objective} < f_{eye\ piece}$

$$f \propto \frac{1}{\mu - 1}$$
 and $\mu \propto \frac{1}{\lambda}$

505 (a)

Power of lens, P (in dioptre) = $\frac{100}{\text{focal length } f \text{ (in cm)}}$ $\therefore f = \frac{100}{10} = 10 \ cm$

According to lens maker's formula

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

For biconvex lens $R_1 = +R$, $R_2 = -R$

$$\therefore \frac{1}{f} = (\mu - 1) \left(\frac{1}{R} + \frac{1}{R}\right)$$

$$\Rightarrow \frac{1}{f} = (\mu - 1) \left(\frac{2}{R}\right)$$

$$\frac{1}{10} = (\mu - 1) \left(\frac{2}{10}\right)$$

$$\Rightarrow (\mu - 1) = \frac{1}{2}$$

$$\mu = \frac{1}{2} + 1 = \frac{3}{2}$$

507 (c)

$$m = -\frac{f_0}{f_e}$$
$$m' = \frac{m}{2}$$

508 (d)

Here,
$$i_1 = 60^{\circ}$$
, $A = 30^{\circ}$, $\delta = 30^{\circ}$
As $i_1 + i_2 = A + \delta$,
 $i_2 = 0$

Hence, angle between the ray and the face from which it emerges = $90^{\circ} - 0^{\circ} = 90^{\circ}$

509 (d)

$$a\mu_{g} = \frac{1}{\sin C}$$

$$\Rightarrow \sin C = \frac{1}{a\mu_{g}}$$

As µ for violet colour is maximum, so sin C is minimum and hence critical angle C is minimum for violet colour.

511 (c)

Let x be the apparent position of the silvered surface

According to property of plane mirror $x + 8 = 12 + 6 - x \Rightarrow x = 5 cm$ Also $\mu = \frac{t}{x} \Rightarrow \mu = \frac{6}{5} = 1.2$

513 (a)

$$\mu = \frac{\sin(\frac{A+\delta_m}{2})}{\sin\frac{A}{2}} = \frac{\sin(A+A)/2}{\sin(A/2)}$$

$$= 2\cos\frac{A}{2}$$
or $A = 2\cos^{-1}\left(\frac{\mu}{2}\right)$

$$= 2\cos^{-1}\left(\frac{1.5}{2}\right) = 2\cos^{-1}\left(\frac{3}{4}\right)$$

Since object and image move in opposite directions, the positioning should be as shown in the figure. Object lies between focus and center of curvature f < x < 2f.

515 (a)

When the final image is formed at infinity by a telescope, it is called in normal adjustment and then length of the telescope is given by

$$L = f_0 + f_e$$

Where f_0 is the focal length of objective lens and f_e is the focal length of eye-piece

$$\therefore L = f_0 + f_e = 0.3 + 0.05 = 0.35 \, m$$

516 **(c**)

Total power $P = P_1 + P_2 = 11 - 6 = 5 D$

Also
$$\frac{f_l}{f_a} = \frac{(a\mu_g - 1)}{(l\mu_g - 1)} \Rightarrow \frac{P_a}{P_l} = \frac{(a\mu_g - 1)}{(l\mu_g - 1)}$$

$$\Rightarrow \frac{5}{P_l} = \frac{(1.5 - 1)}{(1.5/1.6 - 1)} \Rightarrow P_l = -0.625 D$$

517 (c)

For
$$m = 1$$
, $u = 2f = 40$ cm

518 **(b)**

Refractive index, $\mu = \frac{1}{\sin c}$ $\mu = \frac{c}{v}$

$$\therefore \frac{c}{v} = \frac{1}{\sin C}$$

$$\Rightarrow \frac{3 \times 10^8}{v} = \frac{1}{\sin 30^\circ}$$

$$v = 1.5 \times 10^8 \, \text{ms}^{-1}$$

519 **(b)**

520 (d)

A microscope consists of lens of small focal lengths. A telescope consists of objective lens of large focal length

521 (c)

$$P = P_1 + P_2 \Rightarrow P = +2 + (-1) = +1D$$

$$f = \frac{+100}{P} = \frac{+100}{1} = 100 \text{ cm}$$

523 (a)

For normally emerge e=0Therefore $r_2=0$ and $r_1=A$ Snell's law for incident ray's $1 \sin i = \mu \sin r_1 = \mu \sin A$ For small angle $i=\mu A$

524 (a)

$$\frac{\omega_1}{\omega_2} = -\frac{f_1}{f_2} \Rightarrow \frac{5}{3} = \frac{-(-15)}{f_2} \Rightarrow f_2 = 9 \text{ cm}$$

525 (b)

The refractive index of water with respect to air

$$\mu = \frac{C_{air}}{C_{water}} = \frac{v\lambda_{air}}{v\lambda_{water}}, \mu = 1.33$$

$$\therefore \lambda \text{ in water} = \frac{\lambda_{air}}{\mu} \Rightarrow \lambda \text{ in water} = \frac{589}{1.33}nm$$

$$\Rightarrow \lambda \text{ in water} = 443 nm$$

527 **(b)**

Neon street sign emits light of specific wavelength

528 (c)

Due to the absorption of certain wavelengths by the elements in outer layers of sun

529 (a)

The coverging lens used for magnification is called simple microscope or a magnifier. When image is formed at *D*, the least distance of distinct vision, then magnifying power

$$M = 1 + \frac{D}{f}$$

Given, $D = 25$ cm, $f = 10$ cm
 $\therefore M = 1 + \frac{25}{10} = 1 + 2.5 = 3.5$

530 (b)

Object should be placed on focus of concave mirror

$$m = \frac{f}{f - u}$$

$$\frac{1}{2} = \frac{200}{200 - u}$$

$$200 - u = 400$$

$$u = -200 \text{ cm}$$

$$u = -2 \text{ m}$$

533 (d)

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$
 and $m = \frac{v}{u} = -\frac{l}{o}$

Using above relation, the length of image

$$I = \frac{f^2}{x - f}$$

535 (c)

$$f \propto \frac{1}{\mu - 1}$$
 and $\mu \propto \frac{1}{\lambda}$

536 (b)

 $\because \angle i > \angle r$, it means light ray is going from rarer medium (A) to denser medium

So
$$v(A) > v(B)$$
 and $n(A) < n(B)$

537 (b)

When final image formed at normal adjustment, then length of compound microscope,

$$L = v_0 + u_e = \frac{u_0 f_0}{(u_0 + f_0)} + \frac{f_e D}{f_e + D}$$
$$= -\frac{-1.2 \times 1}{-1.2 + 1} + \frac{2.5 \times 25}{2.5 + 25}$$
$$6 + 2.27 = 8.27 \approx 8.3 cm$$

538 (b)

For correcting the near point, required focal length

$$f = \frac{50 \times 25}{(50 - 25)} = 50cm$$

So power
$$P = \frac{100}{50} = +2D$$

For correcting the far point, required focal length f = - (defected far point) = -3 m

$$\therefore P = -\frac{1}{3}D = -0.33D$$

539 (a)

The dispersive power for crown glass $\omega = \frac{n_v - n_r}{n_v - 1}$

$$= \frac{1.5318 - 1.5140}{(1.5170 - 1)} = \frac{0.0178}{0.5170} = 0.034$$

and for flint glass
$$\omega' = \frac{1.6852 - 1.6434}{(1.6499 - 1)} = 0.064$$

e
$$A(\mu_y - 1) + A'(\mu_{y'} - 1) = 0 \Rightarrow \frac{A'}{A} =$$

541 (b)

$$I \propto \frac{1}{r^2}$$

$$f_o = \frac{1}{1.25} = 0.8 \, m \text{ and } f_e = \frac{1}{-20} = -0.05 \, m$$

$$\therefore |L_{\infty}| = |f_o| - |f_e| = 0.8 - 0.05 = 0.75 m$$

$$= 75 \, cm$$
and $|m_{\infty}| = \frac{f_o}{f_e} = \frac{0.8}{0.05} = 16$

543 (d)

Angular resolution
$$d\theta = \frac{1.22 \,\lambda}{a}$$

= $\frac{1.22 \times 5000 \times 10^{-10}}{10 \times 10^{-2}} = 6.1 \times 10^{-6} rad$

544 (a)

$$\mu = 1.5$$

$$\delta_m = A$$
We know that

We know that

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}}$$

$$1.5 = \frac{\sin\left(\frac{A+A}{2}\right)}{\sin\frac{A}{2}} = \frac{\sin A}{\sin\frac{A}{2}}$$

$$1.5 = \frac{2\sin\frac{A}{2} \cdot \cos\frac{A}{2}}{\sin\frac{A}{2}}$$

$$1.5 = 2\cos\frac{A}{2}$$

$$\cos\frac{A}{2} = \frac{1.5}{2} = 0.75$$

$$cos41.4 = 0.75$$

$$\frac{A}{2} = 41.4$$

$$A = 82.8$$

546 (c)

Refraction from lens

$$\frac{1}{v_1} = \frac{1}{-20} = \frac{1}{15}$$

$$v = 60 cm + ve$$
 direction

Ie, first image is formed at 60 cm to the right of lens system.

Reflection from mirror After reflection from the mirror, the second image will be formed at a distance of 60 cm to the left of lens system.

Refraction from lens $\frac{1}{v_3} - \frac{1}{60} = \frac{1}{15}$ + ve direction

Or
$$v_3 = 12 \, cm$$

Therefore, the final image is formed at 12 cm to the left of the lens system.

 $\frac{\text{Yellow}}{\text{(Primary)}} + \frac{\text{Blue}}{\text{(Primary)}} = \frac{\text{Green}}{\text{(Secondary)}}$

548 **(d**)

$$m_{\text{max}} = 1 + \frac{D}{f} = 1 + \frac{25}{2.5} = 11$$

550 (d)

R.P. of microscope =
$$\frac{2\mu \sin \theta}{\lambda}$$

551 (a)

When the object is placed at focus the rays are parallel. The mirror placed normal sends them back. Hence image is formed at the object itself as illustrated in figure

552 **(b)**

Let S be the light source. If light falls on the surface at critical angle C, it grazes along the surface as shown.

$$\sin C = \frac{1}{n} = \frac{1}{5}$$

From ΔQSR , we have

$$\tan C = \frac{QR}{QS} = \frac{r}{4}$$

$$\Rightarrow \frac{3}{4} = \frac{r}{4}$$

$$\Rightarrow r = 3$$

Hence, diameter = $2r = 2 \times 3 = 6 \text{ m}$

553 **(b**)

$$h' = \frac{d_1}{\mu_1} + \frac{d_2}{\mu_2} = d\left(\frac{1}{\mu_1} + \frac{1}{\mu_2}\right)$$

554 (d)

Colour blindness is a genetic disease and still cannot be cured

555 (c)

In the following ray diagram $\Delta' s$, ABC and CDE are symmetric

So,
$$\frac{AB}{AC} = \frac{DE}{CD} \Rightarrow \frac{5}{40} = \frac{h}{20} \Rightarrow h = 2.5 \text{ cm}$$

557 (a

Since, lens is made of two layers of different refractive indices, for a given wavelength of light it will have two focal lengths or will form two images at two different points as there are μ 's as $\frac{1}{2} \propto (\mu - 1)$

$$\overline{f} \propto (\mu -$$

559 (a)

$$L_{\infty} = v_o + f_e \Rightarrow 14 = v_o + 5 \Rightarrow v_o = 9 \ cm$$

Magnifying power of microscope for relaxed eye $m = \frac{v_o}{u_o} \cdot \frac{D}{f_e}$ or $25 = \frac{9}{u_o} \cdot \frac{25}{5}$ or $u_o = \frac{9}{5} = 1.8 \ cm$

560 **(b**)

For normal vision (relaxed eye), the image is formed at infinity. Hence the magnifying power of Gallilean telescope $=\frac{f_0}{f_e}=\frac{200}{2}=100$

561 (b)

In concave mirror, if virtual images are formed, u can have values zero and f

At
$$u = 0$$
, $m = \frac{f}{f - u} = \frac{f}{f} = 1$

At
$$u = f$$
, $m = \frac{f}{f - u} = -\frac{f}{-f - (-f)} = \infty$

562 **(b)**

$$\frac{f_l}{f_a} = \frac{a\mu_g - 1}{l\mu_g - 1} = \frac{(1.5 - 1) \times 1.7}{(1.5 - 1.7)}$$
0.85

$$\Rightarrow f_1 = \frac{0.85}{-0.2} f_a = -4.25 f_a$$

563 (d)

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} - \frac{1}{-15} = \frac{1}{10}$$

$$Or \frac{1}{v} = -\frac{1}{15} + \frac{1}{10}$$

$$Or \frac{1}{v} = \frac{-2+3}{30}$$

$$Or v = 30 \text{ cm}$$

564 (c)

$$m = 1 + \frac{D}{f_e} \Rightarrow 10 = 1 + \frac{25}{f_e} \Rightarrow f_e = \frac{25}{9} \approx 25 \text{ mm}$$

565 (c)

Resolving power of the telescope is

$$=\frac{a}{1.226}$$

Where a = diameter of aperture of objective lens $\lambda =$ wavelength of light

Therefore, resolving power $\propto a$

As aperture of the objective lens increases, resolving power of telescope increases.

566 (c)

$$f = -d = -60 cm$$

$$\therefore P = \frac{100}{f} = -\frac{100}{60} = -\frac{10}{6} = -1.66 D$$

567 (c)

Resultant focal length = ∞

: It behaves as a plane slab of glass

568 (b)

All colour are reflected

569 (c)

Velocity of light water in material is

$$v = v\lambda$$
 ... (i)

Refractive index of material is

$$\mu = \frac{c}{v}$$
 ... (ii)

Where c is speed of light in vacuum or air

or
$$\mu = \frac{c}{v\lambda}$$
 ... (iii)

Given, $v = 2 \times 10^{14} \text{Hz}$,

$$\lambda = 5000 \text{Å} = 5000 \times 10^{-10} \text{ m}$$

$$c = 3 \times 10^8 \text{ms}^{-1}$$

Hence, from Eq (iii), we get

$$\mu = \frac{3 \times 10^8}{2 \times 10^{14} \times 5000 \times 10^{-10}} = 3.00$$

570 (c)

Convexity of lens changes by the pressure applied by ciliary muscles

571 (a)

$$t = \frac{\mu x}{c} = \frac{3 \times 4 \times 10^{-3}}{3 \times 10^{8}} = 4 \times 10^{-11} s$$

573 (d)

$$\mu = \frac{1}{\sin C} \Rightarrow C = \sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ}$$

574 (a)

Here, x = u + v

As
$$m = \frac{f}{f+u} = \frac{f-v}{f}$$

and image is real, magnification is negative

$$\therefore -m = \frac{f}{f+u}, u = \frac{-(m+1)f}{m}$$

From
$$-m = \frac{f-v}{f} \Rightarrow v = (m+1)f$$

Put in Eq.(i)

$$x = \frac{-(m+1)}{m}f + (m+1)f$$

Solving ,we get, $f = \frac{mx}{(m+1)^2}$

575 **(c**)

Since intensity \propto (Aperature)², so intensity of image will decrease but no change in the size occurs

576 (a)

Case I

$$I_A = \frac{100}{2^2} = 25 cd$$
and $I_B = \frac{100}{(2.5)^2} \cos \theta$

$$= \frac{100}{2.5^2} \times \frac{2}{2.5} = \frac{200}{(2.5)^3}$$

Case II

$$I'_B = X I_B = \frac{25}{(3.25)^{3/2}}$$

so $\frac{I'_B}{I_B} = \frac{25}{200} \times \frac{(2.5)^3}{(3.25)^{3/2}}$
 $\Rightarrow X = 1/3$

577 (b)

The image formed by a plane mirror is virtual, erect, laterally inverted, equal in size as that of the object and at a distance equal to the distance of the object in front of the mirror.

578 (c)

When incident angle is greater than critical angle, then total internal reflection takes place and will come back in same medium

579 (d)

For least distance, the angular magnification of simple microscope is

$$M = 1 + \frac{D}{f}$$

$$or M = 1 + DP$$

And for normal adjustment

$$M = \frac{D}{f}$$

$$or M = DP$$

Hence, if the angular magnification of simple microscope increases then the power of the lens should increase.

$$A = 30^{\circ}$$
, $\mu = \sqrt{2}$. As we know

$$A = r_1 + r_2 = 0 + r_2 \Rightarrow A = r_2$$

Applying Snell's law for the surface AC

$$\frac{1}{u} = \frac{\sin r_2}{\sin e} = \frac{\sin A}{\sin e}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{\sin 30^{\circ}}{\sin e} \Rightarrow e = 45^{\circ}$$

$$\delta = e - r_2 = 45^{\circ} - 30^{\circ} = 15^{\circ}$$

$$\begin{split} &\frac{c^2}{v^2} = \frac{\mu}{\mu_0} \cdot \frac{\varepsilon}{\varepsilon_0} \\ &\therefore \frac{\varepsilon}{\varepsilon_0} = \frac{9 \times 10^{16}}{4 \times 10^{16}} \times \frac{4\pi \times 10^{-7}}{5 \times 10^{-7}} = 5.8 \approx 6 \end{split}$$

$$5 = (\mu - 1)A = (1.5 - 1)A \Rightarrow A = 10^{\circ}$$

584 (a)

The focal length of the convex lens

$$f = \frac{1}{P}m \Rightarrow f = \frac{1}{5} \times 100 \ cm$$

$$\Rightarrow f = 20 \ cm, u = -10 \ cm$$

$$\Rightarrow \frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{20} = \frac{1}{v} - \frac{1}{-20}$$

$$\therefore v = -20 cm$$

Therefore, the image will be formed at a distance of 20cm on the behind the object

585 (d)

At B

$$\sin i = n_1 \sin r_1 \Rightarrow \sin^2 i = n_1^2 \sin^2 r_1 \quad ...(\mathrm{i})$$

At C

$$n_1 \sin(90 - r_1) = n_2 \sin r_2 \Rightarrow n_2^2 \sin^2 r_2 = n_1^2 \cos^2 r_1$$
 ...(i)

1. 5

$$n_2 \sin(90 - r_2) = n_3 \sin r_3 \Rightarrow n_2^2 \cos^2 r_2 =$$

 $n_3^2 \sin^2 r_3$...(iii)

At E

$$n_3 \sin(90 - r_3) = (1)\sin(90 - i) \Rightarrow$$

 $\cos^2 i = n_3^2 \cos^2 r_3$...(iv)

Adding (i), (ii), (iii), and (iv) we get $1 + n_2^2 = n_1^2 + n_3^2$

586 (d)

Use
$$d = f$$
; where, $\frac{1}{f} = (\mu - 1)\frac{2}{R} = (1.5 - 1) \times 2$

$$\frac{2}{20} = \frac{1}{20}$$

$$\Rightarrow f = 20 \text{ cm}$$

587 (c)

$$m = \frac{f}{f - u} = \frac{-16}{-16 - (-8)} = \frac{-16}{-8} = 2$$

588 **(b**)

$$\frac{1}{f_{\text{air}}} = (\mu_{\text{g}} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \quad \dots (i)$$
and
$$\frac{1}{f_{\text{water}}} = \left(\frac{\mu_{\text{g}}}{\mu_{\text{w}}} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \quad \dots (ii)$$

Dividing Eq. (i) by Eq. (ii) we get

$$\frac{f_{\text{water}}}{f_{\text{air}}} = \left(\frac{\mu_{\text{g}} - 1}{\mu_{\text{g}}/\mu_{\text{w}} - 1}\right) = \frac{\left(\frac{3}{2} - 1\right)}{\left(\frac{3/2}{4/3} - 1\right)} f_{\text{air}}$$

$$=4f_{air}=4\times10$$

$$f_{\text{water}} = 40 \text{ cm}$$

589 (d)

Critical angle for the material of prism $C = \sin^{-1}\left(\frac{1}{\mu}\right) = \sin^{-1}\left(\frac{1}{1.5}\right) = 42^{\circ}$ since angle of

incidence at surface $AB(60^\circ)$ is greater than the critical angle (42°), so total internal reflection takes place

|591 **(a)**

For total internal reflection
$$i > C$$

 $\Rightarrow \sin C > \sin C \Rightarrow \sin i > \frac{1}{\mu} \Rightarrow \frac{1}{\sin i} < \mu$

592 (b)

$$\begin{aligned} &\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \\ &\Rightarrow \frac{1}{+10} = (1.5 - 1) \left(\frac{1}{+7.5} - \frac{1}{R_2} \right) \Rightarrow R_2 = -15 \ cm \end{aligned}$$

593 (a)

The power of the given system is a combination for the positive power of the convex lens, negative power of the plano-concave lens of water and zero power of the plane mirror. Clearly, the power of the system decreases

594 (b)

In two images man will see himself using left hand

595 (c)

Let as shown, 1 and 2 are positions of objects and images in two different situations.

Object

It is given

$$\left|\frac{v_1}{u_1}\right| = 2\left|\frac{v_2}{u_2}\right|$$

Here, $u_1 = -15 \, cm$, $u_2 = -20 \, cm$

$$\therefore v_1 = 2v_2 \times \frac{u_1}{u_2} = 2v_2 \times \frac{15}{20} = \frac{3}{2}v_2$$

$$now, \qquad \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\therefore \frac{1}{f} = \frac{1}{v_1} - \frac{1}{u_1} \text{ and } \frac{1}{f} = \frac{1}{v_2} - \frac{1}{u_2}$$

so,
$$\frac{1}{v_1} - \frac{1}{u_1} = \frac{1}{v_2} - \frac{1}{u_2}$$

$$\Rightarrow \frac{2}{2v_2} + \frac{1}{15} = \frac{1}{v_2} + \frac{1}{20}$$

$$\Rightarrow v = 20 cm$$

$$\therefore \frac{v_1}{u_1} = 2 \frac{v_2}{u_2} = 2 \times \frac{20}{20} = 2$$

$$\Rightarrow v_1 = 2u_1 = 2 \times 15 = 30 \text{ cm}$$

Therefore,
$$\frac{1}{f} = \frac{1}{v_1} - \frac{1}{u_1} = \frac{1}{15} + \frac{1}{30} = \frac{3}{30}$$

$$\therefore f = 10cm = 0.10 m$$

597 (b)

From above figure it can be proved that separation between nth order image formed in the two mirrors = 2na

598 (d)

Luminous flux = $4\pi L = 4 \times 3.14 \times 42 = 528 Lumen$

Power of lamp = $\frac{\text{Luminous flux}}{\text{Luminous efficiency}} = \frac{528}{2} = 264 \text{ W}$

600 (b)

Refractive index, $\mu = \frac{1}{\sin C}$

Where C is the critical angle

Here, $C = 45^{\circ}$

$$\therefore \mu = \frac{1}{\sin 45^{\circ}}$$

or
$$\mu = \sqrt{2}$$

or
$$\mu = 1.414$$

601 **(b)**

The apparent depth of ink mark

$$= \frac{\text{real depth}}{\mu} = \frac{3}{3/2} = 2 \text{ cm}$$

Thus person views mark at a distance = 2 + 2 = 4 cm

603 (c)

Let the angle between the two mirrors be θ , Ray PQ is parallel to mirror M_1 and RS is parallel to M_2 .

So, $\angle M_1 RS = \angle ORQ = \angle M_1 OM_2 = \theta$

Similarly, $\angle M_2QP = \angle OQR = \angle M_2OM_1 = \theta$

$$\therefore \text{ In } \triangle ORQ, 3\theta = 180^{\circ}$$

$$\theta = 60^{\circ}$$

604 (d)

This is the defect of hypermetropia

605 **(b)**

$$R. P. \propto \frac{1}{\lambda}$$
; $\lambda_{Blue} < \lambda_{Red}$ so $(R. P.)_{Blue} > (R. P.)_{Red}$

606 (a)

Since
$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u} \Rightarrow \frac{1}{v} = -\frac{1}{u} + \frac{1}{f}$$

Putting the sign convention property

$$\frac{1}{(-v)} = \frac{-1}{(-u)} + \frac{1}{(-f)} \Rightarrow \frac{1}{v} = -\frac{1}{u} + \frac{1}{f}$$

Comparing this equation with y = mx + c

Slope = $m = \tan \theta = -1 \Rightarrow \theta = 135^{\circ} \text{ or } -45^{\circ} \text{ and}$

intercept $C = +\frac{1}{f}$

607 (b)

In the case of refraction if CD is the refracted wave front and v_1 and v_2 are the speed of light in the two media, then in the time the wavelets from B reaches C, the wavelet from A will reach D, such that

$$t = \frac{BC}{v_a} = \frac{AD}{v_g} \Rightarrow \frac{BC}{AD} = \frac{v_a}{v_g}$$
 ... (i)

But in $\triangle ACB$, $BC = AC \sin \theta$...(ii)

While in $\triangle ACD$, $AD = AC \sin \phi'$...(iii)

From equations (i), (ii) and (iii) $\frac{v_a}{v_g} = \frac{\sin \theta}{\sin \phi}$

Also
$$\mu \propto \frac{1}{v} \Rightarrow \frac{v_a}{v_g} = \frac{\mu_g}{\mu_a} = \frac{\sin \theta}{\sin \phi'} \Rightarrow \mu_g = \frac{\sin \theta}{\sin \phi'}$$

608 (b)

From figure it is clear object appears to be raised by $\frac{10}{4}$ cm (2.5 cm)

Hence distance between mirror and

$$O''''''' = 5 + 7.5 = 12.5 cm$$

So final image will be formed at $12.5\ cm$ behind the plane mirror

610 (b)

$$m \propto \frac{1}{f_e}$$

(11 (

$$\frac{n_g}{n_a} = \frac{c_a}{c_g}$$

$$\frac{3}{2} = \frac{3 \times 10^8}{c_g}$$

$$c_g = 2 \times 10^8$$

Time =
$$\frac{\text{Distance}}{\text{Speed}}$$
$$= \frac{4 \times 10^{-3}}{2 \times 10^{8}} = 2 \times 10^{-11} \text{s}$$

612 (c)

613 (b)

Illuminance produced by the sun = $\frac{L}{(1.5 \times 10^{11})^2}$ Illuminance produce by the bulb = $\frac{10000}{(0.3)^2}$ According to problem $\frac{L}{(1.5 \times 10^{11})^2} = \frac{10000}{(0.3)^2}$ $\Rightarrow L = \frac{2.25 \times 10^{22} \times 10^4}{9 \times 10^{-2}} = 25 \times 10^{26} \, Cd$ It is observed if $\angle i = \angle e$ deviation produced is minimum

And
$$i = \frac{A + \delta_m}{2}$$

Here
$$A = 60^{\circ}$$

And
$$\angle i = \angle e = \frac{3}{4} \angle A$$

$$\delta_m = 2 \times \frac{3}{4} \times 60^{\circ} - 60^{\circ} = 30^{\circ}$$

614 (b)

Fraunhoffer lines observed in solar spectra are absorption lines superposed on a continuous spectrum, This is an example of line absorption spectrum

615 (d)

Visible region decreases, so the depth of image will not be seen

616 (b)

$$f \propto \frac{1}{\mu - 1}$$
 and $\mu \propto \frac{1}{\lambda}$

617 (d)

$$I \propto A^2 \Rightarrow \frac{I_2}{I_1} = \left(\frac{A_2}{A_1}\right)^2 = \frac{\pi r^2 - \frac{\pi r^2}{4}}{\pi r^2} = \frac{3}{4}$$

 $\Rightarrow I_2 = \frac{3}{4}I_1$ and focal length remains unchanged

618 (d)

Length of tube = 10 cm

$$f_0 + f_e = 10 \ cm$$

Magnification

$$m = \frac{f_0}{f_e} = 4$$

$$f_0 = 4f_e$$

Putting in Eq. (I)

$$5f_e = 10 cm$$

$$or f_e = 2 cm$$

and
$$f_0 = 8 cm$$

$$f_0 = 8cm, f_e = 2cm$$

Hence, L_4 and L_1 will be used.

619 (b)

Given,
$$i = 2r$$
, $\mu = \frac{\sin i}{\sin r} = \frac{\sin 2r}{\sin r} = \frac{2 \sin r \cos r}{\sin r}$

$$\cos r = \frac{\mu}{2} \text{ or } r = \cos^{-1} \left(\frac{\mu}{2}\right)$$

$$i = 2r = 2 \cos^{-1} \left(\frac{\mu}{2}\right)$$

620 (c)

$$\theta = \frac{AB}{10^{11}} = \frac{A'B'}{2} \Rightarrow A'B' = \frac{2 \times 1.4 \times 10^9}{10^{11}}$$
$$= 2.8 cm$$

622 (c)

Consider the refraction of the first surface, i.e., refraction from rarer medium to denser medium

$$\frac{\mu_2 - \mu_1}{R} = \frac{\mu_1}{-u} + \frac{\mu_2}{v_1} \Rightarrow \frac{\binom{3}{2} - \binom{4}{3}}{R} = \frac{\frac{4}{3}}{\infty} + \frac{\frac{3}{2}}{v_1} \Rightarrow v_1$$

$$= 9R$$

Now consider the refraction at the second surface of the lens, i.e., refraction from denser medium to rarer medium

$$\frac{1 - \frac{3}{2}}{-R} = -\frac{\frac{3}{2}}{9R} + \frac{1}{v_2} \Rightarrow v_2 = \left(\frac{3}{2}\right)R$$

The image will be formed at a distance of $\frac{3}{2}R$. This is equal to the focal length of the lens

623 (a)

When two lenses are placed coaxially at a distance d from each other, then equivalent focal length (F) is given by

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

When the lenses are put together,

d = 0

Hence, the focal length of the combination will decrease.

624 (d)

The image formed by a convex mirror is always virtual

625 (a)

Sky appears blue due to scattering. In absence of atmosphere no scattering will occur

626 (a)

 $r_2 = 0$ (: No refraction is there at second surface)

$$r_1 = A = 30^{\circ}$$

$$n = \frac{\sin i_1}{\sin r_1} = \frac{\sin i_1}{\sin 30^{\circ}} = \sqrt{2} \times \frac{1}{2} = \frac{1}{\sqrt{2}}$$

$$\sin i_1 = \frac{1}{\sqrt{2}}$$

$$i_1 = 45^{\circ}$$

627 (a)

Total deviation = 0

$$\delta_1 + \delta_2 + \delta_3 + \delta_4 + \delta_5 = (\mu_1 - 1)A_1 - (\mu_2 - 1)A_2 + (\mu_3 - 1)A_3 - (\mu_4 - 1)A_4 + (\mu_5 - 1)A_5 = 0$$

$$\Rightarrow 2 \times A_2(1.6 - 1) = 3(1.53 - 1)9 \Rightarrow A_2 = 11.9^{\circ}$$

628 (b)

$$\mu = \frac{c}{v} \Rightarrow \mu = \frac{c}{c/2} = 2$$
 also for total internal reflection

$$i > c \Rightarrow \sin i \ge \sin c \Rightarrow \sin i \ge \frac{1}{u}$$

Hence $i \ge \sin^{-1}\left(\frac{1}{\mu}\right)$ or $\mu \ge 30^{\circ}$

629 (c)

630 (a)

When final image is formed at infinity, length of the tube = $v_o + f_e$

$$\Rightarrow 15 = v_o + 3 \Rightarrow v_o = 12 cm$$

For objective lens $\frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$

$$\Rightarrow \frac{1}{(+2)} = \frac{1}{(+12)} - \frac{1}{u} \Rightarrow u_0 = -2.4 \text{ cm}$$

Distance between object and image = 0.5 + 0.5 =

632 (c)

$$_{a}\mu_{g} = \frac{1}{\sin \theta} \Rightarrow \mu = \frac{1}{\sin \theta} \dots (i)$$

Now from Snell's law $\mu = \frac{\sin i}{\sin r} = \frac{\sin \theta}{\sin r}$

$$\Rightarrow \sin r = \frac{\sin \theta}{\mu} \qquad \dots \text{(ii)}$$

From equation (i) and (ii)

$$\sin r = \frac{1}{\mu^2} \Rightarrow r = \sin^{-1}\left(\frac{1}{\mu^2}\right)$$

633 (d)

When total internal reflection just takes place from lateral surface i = C, i.e., $60^{\circ} = C$

$$\Rightarrow \sin 60^\circ = \sin C = \frac{1}{\mu} \Rightarrow \mu = \frac{2}{\sqrt{3}}$$

Time taken by light to traverse some distance in a

medium
$$t = \frac{\mu x}{c} = \frac{\frac{2}{\sqrt{3}} \times 10^3}{3 \times 10^8} 3.85 \ \mu \ s.$$

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

For double convex lens, $R_1 = R$, $R_2 = -R$

$$\frac{1}{5} = (1.5 - 1)\left(\frac{1}{R} + \frac{1}{R}\right)$$

$$or \frac{1}{5} = 0.5 \times \frac{2}{R}$$

$$or R = 5 cm$$

635 (c)

$$L = v_0 + u_e$$
 and $v_0 \gg f_0, u_e \simeq f_e$

636 (a)

By using formula,

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$$

 $\Rightarrow \frac{1.5}{v} - \frac{1}{(-15)} = \frac{1.5 - 1}{+30}$

$$\Rightarrow v = -30 cm$$

637 **(b)**

This is a modified displacement method problem Here, $a=1.8\mathrm{m}$ and $\frac{a+d}{a-d}=\frac{2}{1}$

Solving we get d = 0.6 m

$$\therefore f = \frac{a^2 - d^2}{4a}$$

= 0.4 m

639 (b)

$$f = \frac{R}{(\mu - 1)} = \frac{60}{(1.6 - 1)} = 100 cm$$

640 (d)

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

For planoconvex lens

$$R_1 = \infty, R_2 = -R = -1.5 \text{ cm}, \mu = 1.4$$

$$\therefore \frac{1}{f} = (1.4 - 1) \left(0 + \frac{1}{15} \right)$$

$$or\frac{1}{f} = 0.4 \times \frac{1}{15}$$

Therefore, power of the lens in diopter

$$P = \frac{100}{f} = \frac{40}{15} = 2.66 D$$

641 **(d**)

Resolving power of an optical instrument is inversely proportional to λ *i.e.*, $RP \propto \frac{1}{\lambda}$ $\therefore \frac{Resolving\ power\ at\ \lambda_1}{Resolving\ power\ at\ \lambda_2} = \frac{\lambda_2}{\lambda_1} = \frac{5000}{4000} = 5:4$

642 (2)

Refractive index $\propto \frac{1}{\text{(Temperature)}}$

643 (c)

Number of images =
$$\frac{360^{\circ}}{9} - 1$$

Where θ is in degrees, $\therefore 5 = \frac{360^{\circ}}{\theta} - 1$

or
$$\theta = \frac{360^{\circ}}{\theta} = 60^{\circ}$$

New angle, $\theta' = \theta - 30^{\circ} = 60^{\circ} - 30^{\circ} = 30^{\circ}$

Number of images =
$$\frac{360^{\circ}}{30^{\circ}} - 1 = 11$$

645 (b)

According to Cauchy's formula, refractive index (μ) depends on the wavelength on the wavelength of light as

$$\mu = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}$$

Where A, B and C are consists

Angle of deviation, $\delta = (\mu - 1)A'[A']$ angle of prism

 $\lambda_{\text{Violet}} < \lambda_{\text{Green}} < \lambda_{\text{Red}}$

 $\mu_{\mathrm{Violet}} > \mu_{\mathrm{Green}} > \mu_{\mathrm{Red}} \Rightarrow \delta_{\mathrm{Violet}} > \delta_{\mathrm{Green}} > \delta_{\mathrm{Red}}$ According to given problem $\theta_1 < \theta_2 < \theta_3$

646 (a)

$$\omega = \frac{\delta_V - \delta_R}{\delta_V} = \frac{3.72 - 2.84}{3.28} = 0.268$$

647 (a)

According to given conditions TIR must take place at both the surfaces *AB* and *AC*. Hence only option (*a*) is correct

648 (d)

Using
$$\delta = i_1 + i_2 - A \Rightarrow 55 = 15 + i_2 - 60 \Rightarrow i_2 = 100^{\circ}$$

649 **(b)**

After completely immersed in water this bag will behave as convergence lens.

650 (a)

For a prism, as the angle of incidence increases, the angle of deviation first decreases, goes to a minimum value of then increases

652 (d)

Apparent height of flame above water surface.

$$h' = \mu h = \frac{4}{3} \times 2 = \frac{8}{3} \text{m}$$

Therefore, apparent height of the flame from the eye of fish

$$= d + h' = 4 + \frac{8}{3} = \frac{20}{3}$$
 m

653 (c)

$$\theta_{net} = \theta + \theta' = 0 \Rightarrow \omega d + \omega' d' = 0$$

 $(\theta = \text{Angular dispersion} = \omega. \delta_{v})$

654 (d)

The atmosphere can be considered to consist of a number of parallel layers of air of different densities and therefore of different refractive

indices. The density and the refractive index of layers decrease with altitude.

The rays of light coming from a star to the earth are thus continually refracted from the rarer to the denser layers and so they bend slightly towards the normal at each refraction from one layer to the next. Thus, they follow a curved path and reach the eyes of the observer at O as shown in figure. Hence, the image of the star S is seen as S'. But due to the wind and the convection currents in air the density of layers keep on changing and hence, the position of the stat S' as seen, keeps on changing. These different images of the start give an impression to an observer that the star is twinkling.

655 (c)

Real & apparent depth are explained on the basis of refraction only. TIR not involved here

$$P = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} = 0$$

$$\therefore \frac{1}{f_1} + \frac{1}{f_2} = \frac{d}{f_1 f_2}$$

$$\frac{1}{20} - \frac{1}{56} = \frac{d}{20(-56)}$$

$$\frac{56 - 20}{20 \times 56} = \frac{d}{-20 \times 56}$$

$$d = -36 \text{ cm}$$

657 (b)

For improving far point, concave lens is required and for this concave lens $u=\infty, v=-30~cm$

So
$$\frac{1}{f} = \frac{1}{-30} - \frac{1}{\infty} \Rightarrow f = -30 \ cm$$

For near point $\frac{1}{-30} = \frac{1}{-15} - \frac{1}{u}$ $\Rightarrow u = -30 \text{ cm}$

658 (b)

When object is placed between *F* and pole of a convex lens then a virtual, erect and magnified image will be formed on the same side behind the object.

$$\frac{1}{60} = \frac{1}{f_1} + \frac{1}{f_2} \qquad \dots (i)$$
And $\frac{1}{30} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{10}{f_1 f_2} \dots (ii)$
On solving (i) and (ii) $f_1 f_2 = -600$ and $f_1 + f_2 = -10$
Hence $f_1 = 20$ cm and $f_2 = -30$ cm
$$660 \text{ (c)}$$

$$\mu = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = \sqrt{\mu_r K}$$

661 (a)

$$\frac{1}{f} = \left(g\mu_a - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \left(\frac{2}{3} - 1\right) \left(\frac{2}{10}\right)$$

$$\Rightarrow f = -15 \text{ cm, so behaves as concave lens}$$

662 (b)

Number of images formed

$$= \frac{360^{\circ}}{\theta} \\ = \frac{360^{\circ}}{72} = 5$$

663 (a)

When a mirror is rotated by an angle θ , the reflected ray deviates from its original path by angle 2θ

664 (d)

$$t \propto \frac{f^2}{d^2}$$

 $\frac{f}{d}$ means that the diameter of aperture is $\frac{f}{2}$

Now,
$$\frac{1}{100} \propto \frac{f^2}{\left(\frac{f}{2}\right)^2}$$

$$0r\frac{1}{100} \propto 4 ...(i)$$

Again,
$$t \propto \frac{f^2}{\left(\frac{f}{8}\right)^2}$$

Or
$$t \propto 64$$
 ...(ii)

Dividing Eq.(ii) by Eq.(i)

$$100t = \frac{64}{4} = 16 \text{ or } t = \frac{16}{100}s$$

666 (a)

Since light transmitting area is same, there is no effect on intensity

667 **(b)**

Refractive index, $a\mu_g = 1.5$

$$\frac{1}{\sin C} = 1.5$$

$$\Rightarrow C = 42^{\circ}$$

Critical angle for glass = 42°

When the angle of incidence in the denser medium is greater than the critical angle, reflection takes place inside the denser medium.

Hence, a ray of light incident at 50° in glass medium undergoes total internal reflection.

Deviation (
$$\delta$$
) = $180^{\circ} - (50^{\circ} + 50^{\circ})$

(from the figure)

Or
$$\delta = 80^{\circ}$$

$$\mu_w < \mu_g \Rightarrow c_w > c_g$$

$$\frac{1}{0} = \frac{f}{f-u}$$
; where $u = f + x$ $\therefore \frac{1}{0} = -\frac{f}{x}$

671 (c)

In chromatic aberration the image formed by a lens has coloured fringes, because the refractive index for different colours is different and hence the focal length of lens for different colours is different. So, the cause of chromatic aberration is the variation of focal length with colour.

672 (a)

Critical angel
$$\theta_C = \sin^{-1}\left(\frac{1}{\mu}\right)$$

Wavelength increases in the sequence of VIBGYOR. According to Cauchy's formula refractive index (μ) decreases as the wavelength increases. Hence, the refractive index will increase in the sequence of ROYGBIV. The critical angle θ_C will thus increase in the same order VIBGYOR. For green light the incidence angle is just equal to the critical angle. For yellow, orange and red the critical angle will be greater than the incidence angel. So these colours will emerge from the glass air interface.

673 (b)

$$f = \frac{D^2 - x^2}{4D}$$
 [Focal length by displacement method]

$$\Rightarrow f = \frac{(100)^2 - (40)^2}{4 \times 100} = 21 \text{ cm}$$

$$\therefore P = \frac{100}{f} = \frac{100}{21} = 5D$$

674 (c

From figure,
$$\tan C = \frac{r}{12}$$

or
$$r = 12 \tan C$$

or $r = \frac{12 \sin C}{\sqrt{1 - \sin^2 C}}$
 $r = \frac{12 \times \frac{1}{\mu}}{\sqrt{1 - \frac{1}{\mu^2}}} = \frac{12}{\sqrt{\mu^2 - 1}} = \frac{12}{\sqrt{\left(\frac{4}{3}\right)^2 - 1}}$
 $ie, r = \frac{12 \times 3}{\sqrt{7}}$

675 (c)

According to lens formula
$$\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

The lens is plano-convex *i.e.*, $R_1=R$ and $R_2=\infty$ Hence $\frac{1}{f}=\frac{\mu-1}{R}\Rightarrow f=\frac{R}{\mu-1}$

Speed of light in medium of lens $v = 2 \times 10^8 \ m/s$

$$\Rightarrow \mu = \frac{c}{v} = \frac{3 \times 10^8}{2 \times 10^8} = \frac{3}{2} = 1.5$$

If r is the radius and y is the thickness of lens (at the centre), the radius of curvature R of its curved surface in accordance with the figure is given by

$$R^2 = r^2 + (R - y)^2 \Rightarrow r^2 + y^2 - 2Ry = 0$$

Neglecting
$$y^2$$
; we get $R = \frac{r^2}{2y} = \frac{(6/2)^2}{2 \times 0.3} = 15 \text{ cm}$

Hence
$$f = \frac{15}{1.5-1} = 30 \ cm$$

676 (a)

From the geometry of the figure

 $P_1 P_2 = 2a \sin 60^{\circ}$

So,
$$I_{P_2} = \frac{L}{(P_2 P_2)^2}$$
 L

$$=\frac{L}{(2a\sin 60^\circ)^2} = \frac{L}{3a^2}$$

and
$$I_{P_3} = \frac{L}{(P_1 P_2^2 + a^2)} \cos 30^\circ$$

$$= \frac{L}{[(2a\sin 60^\circ)^2 + a^2]} \frac{\sqrt{3}}{2} = \frac{\sqrt{3}L}{8 a^2}$$

$$\Rightarrow I_{P_3} = \frac{3\sqrt{3}}{8}I_{P_2} = \frac{3\sqrt{3}}{8}I_0$$

677 (c)

Image can be formed on the screen if it is real. Real image of reduced size can be formed by a concave mirror or a convex lens

Let
$$u = 2f + x$$
, then

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{2f+x} + \frac{1}{v} = \frac{1}{f}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{f} - \frac{1}{2f + x} = \frac{f + x}{f(2f + x)}$$

$$\Rightarrow v = \frac{f(2f+x)}{f+x}$$

It is given that u + v = 1.0 m

$$2f + x + \frac{f(2f+x)}{f+x} = (2f+x)\left[1 + \frac{f}{f+x}\right] < 1.0$$
m

Or
$$\frac{(2f+x)^2}{f+x}$$
 < 1.0m

Or
$$(2f + x)^2 < (f + x)$$

This will be true only when f < 0.25 m

678 (c)

$$v = \sqrt{2gh} = \sqrt{2 \times 10 \times 7}$$
$$= 12 \text{ ms}^{-1}$$

In this case when eye is inside water,

$$x_{\text{app.}} = \mu x$$

$$\therefore \frac{dx_{\rm app.}}{dt} = \mu \cdot \frac{dx}{dt}$$

Or
$$v_{app.} = \mu v = \frac{4}{3} \times 12 = 16 \text{ ms}^{-1}$$

679 (b)

Refractive index $\mu = \frac{\text{Real depth } (d)}{\text{Apparent depth } (x)}$

For 1st liquid,
$$\sqrt{2} = \frac{d}{x_1}$$

$$\Rightarrow x_1 = \frac{d}{\sqrt{2}}$$

Similarly, for 2nd liquid,

$$n = \frac{d}{x_2}$$

$$x_2 = \frac{d}{n}$$

Total apparent depth = $x_1 + x_2$

$$=\frac{d}{\sqrt{2}}+\frac{d}{n}$$

$$=\frac{d(n+\sqrt{2})}{n\sqrt{2}}$$

680 (a)

$$\phi_{\text{surface}} = \frac{3000}{6} = 500 \, lumen$$

681 (d)

Virtual image is seen on the photograph

682 (b)

From the following ray diagram

$$d = 0.2 \tan 30^\circ = \frac{0.2}{\sqrt{3}}$$

$$\Rightarrow \frac{I}{d} = \frac{2\sqrt{3}}{0.2/\sqrt{3}} = 30$$

Therefore maximum number of reflections are 30

In minimum deviation condition $\angle i = \angle e, \angle r_1 =$

684 (d)

$$_{air}\mu_{water} = \frac{\text{speed of light in air}}{\text{speed of light in water}} = \frac{c}{v}$$

$$\therefore _{air}\mu_{water} = \frac{v\lambda_{air}}{v\lambda_{water}}$$

$$\therefore _{air}\mu_{water} = \frac{v\lambda_{air}}{v\lambda_{water}}$$

$$\Rightarrow \lambda_{water} = \frac{\lambda_{air}}{air}\mu_{water} = \frac{4200}{(4/3)} = \frac{3}{4} \times 4200$$

685 (a)

$$F = \frac{f_1 f_2}{f_2 - f_1}$$
, F will be negative if $f_1 > f_2$

686 (b)

Here, angle of incidence $i = 45^{\circ}$

Lateral shift(d)

$$\frac{\text{Date fair Simit}(\alpha)}{\text{Thickness of glass slab } (t)} = \frac{1}{\sqrt{3}}$$

Lateral shift
$$d = \frac{t \sin \delta}{\cos r} = \frac{t \sin(i-r)}{\cos r}$$

$$\Rightarrow \frac{d}{t} = \frac{\sin(i-r)}{\cos r}$$

$$\Rightarrow \frac{a}{t} = \frac{\sin(t - t)}{\cos r}$$

$$\operatorname{or} \frac{d}{t} = \frac{\sin i \cos r - \cos i \sin r}{\cos r}$$

or
$$\frac{d}{t} = \frac{\sin 45^{\circ} \cos r - \cos 45^{\circ} \sin r}{\cos r} = \frac{\cos r - \sin r}{\sqrt{2} \cos r}$$

$$\operatorname{or} \frac{d}{t} = \frac{1}{\sqrt{2}} (1 - \tan r)$$

or
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{2}} (1 - \tan r)$$

or
$$\tan r = 1 - \frac{\sqrt{2}}{\sqrt{3}}$$

or
$$r = \tan^{-1}\left(1 - \frac{\sqrt{2}}{\sqrt{3}}\right)$$

688 (a)

Given that, R = -24 cm f = -12 cm and m = 1.5By the lens formula,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{1.5u} + \frac{1}{u} = -\frac{1}{12}$$

$$\frac{2.5}{1.5u} = -\frac{1}{12}$$

$$Oru = -20 \text{ cm}$$

689 (a)

For a telescope

$$\frac{\beta}{\alpha} = \frac{f_0}{f_e}$$

$$\therefore \frac{\beta}{0.5^\circ} = \frac{0.3}{0.03} \Longrightarrow \beta = 5^\circ$$

691 (c)

$$m = \frac{v}{u} = 5 \Rightarrow v = 5 inch [Given u = 1 inch]$$

Using sign convention u = -1 inch, v = -5 inch

$$\therefore \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{-5} - \frac{1}{-1} \Rightarrow f = 1.25 \ inch$$

$$I = \frac{L}{r^2} \Rightarrow L = I.r^2 = 25 \times 2^2 = 100$$

Now $\phi = 4\pi L = 4 \times 3.14 \times 100 = 1256 lumen$

695 (a)

Range of vision for healthy eye is 25 cm (near point) to ∞ (far point). If the person can see clearly only upto a maximum distance of 50 cm he is suffering from myopia (short sightedness). A shortsighted eye can see only nearer objects. This defect can be removed by using a concave lens of suitable focal length f = 50 cm.

Because achromatic combination has same μ for all wavelengths

697 (a)

From figure it is clear that TIR takes place at surface AC and BC

i.e. $45^{\circ} > C$

$$\Rightarrow \sin 45 > \sin C$$

$$\Rightarrow \frac{1}{\sqrt{2}} > \frac{1}{\mu} \Rightarrow \mu > \sqrt{2}$$

Hence $\mu_{least} = \sqrt{2}$

698 (b)

$$\frac{1}{f} = (1.65 - 1) \left(\frac{2}{40}\right)$$

Or
$$\frac{1}{f} = \frac{0.65}{20}$$

Or
$$f = \frac{20}{0.65}$$
 cm

 $= 30.77 \text{ cm} \approx 31 \text{ cm}$

699 (a)

Refractive index =
$$\frac{\text{real depth}}{\text{apparent depth}}$$

$$\therefore \frac{x}{0.04} = \frac{0.21 - x}{0.10}$$

$$\Rightarrow 0.21 \times 0.04 - x \times 0.04 = 0.10x$$

$$\Rightarrow x = \frac{0.21 \times 0.04}{0.14} = 0.06 \text{ m}$$

700 (c)

$$y = \sqrt{y_1 \times y_2} = \sqrt{16 \times 9} = 4 \times 3 = 12 \text{ cm}$$

701 (d)

In this case $|m| = \frac{f_0}{f_e} = 5$ (i)

And length of telescope

$$= f_0 + f_e = 36$$

Solving eqs (i) and (ii), we get

$$f_e = 6 \, cm, f_0 = 30 \, cm$$

Size of image =
$$f\theta = 0.5 \times (1 \times 10^{-3}) = 0.5 \ mm$$

703 (d)

Amount of scattering of light $I_s \propto \frac{1}{14}$

Now here $\lambda_1 = 440nm$, $I_S = A$

For
$$\lambda_2 = 660 \, nm$$
, let $I_S = A'$

then
$$\frac{A'}{A} = \left(\frac{440}{660}\right)^4 \Rightarrow A' = \left(\frac{2}{3}\right)^4 A = \frac{A}{5}$$

$$\frac{f_l}{f_g} = \frac{\alpha \mu_g - 1}{\iota \mu_g - 1} \Rightarrow f_l = 4R$$

Image formed by convex lens at I_1 will act as a virtual object for concave lens. For concave lens

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

or
$$\frac{1}{v} - \frac{1}{4} = \frac{1}{-20}$$

Or
$$v = 5$$
cm

Magnification for concave lens

$$m = \frac{v}{u} = \frac{5}{4} = 1.25$$

As size of the image at I_1 is 2 cm. Therefore, size of image at I_2 will be $2 \times 1.25 = 2.5$ cm.

Cylindrical lens are used for removing astigmatism

708 (d)

$$\mu = \frac{c}{v} = \frac{3 \times 10^8}{1.5 \times 10^8} = 2$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

Or
$$\frac{u}{v} - 1 = \frac{u}{f}$$

Or
$$\frac{u}{v} = \left(\frac{u+f}{f}\right)$$

$$m = \frac{v}{u} = \left(\frac{f}{u+f}\right)$$

$$\frac{m_{25}}{m_{50}} = \frac{\left(\frac{20}{-25 + 20}\right)}{\left(\frac{20}{-50 + 20}\right)} = 6$$

$$v \propto \frac{1}{\mu} \Rightarrow \frac{v_1}{v_2} = \frac{\mu_2}{\mu_1} \Rightarrow \frac{v_g}{v_w} = \frac{\mu_w}{\mu_g} = \frac{4/3}{3/2} = \frac{8}{9}$$

$$_{2}\mu_{1} \times_{3} \mu_{2} \times_{4} \mu_{3} = \frac{\mu_{1}}{\mu_{2}} \times \frac{\mu_{2}}{\mu_{3}} = \frac{\mu_{3}}{\mu_{4}} =_{4} \mu_{1} = \frac{1}{_{1}\mu_{4}}$$

712 (c)

For a lens
$$f_r - f_v = \omega f_y$$

$$\Rightarrow \omega = \frac{f_r - f_v}{f_v} = \frac{0.214 - 0.200}{0.205} = \frac{14}{205}$$

$$\frac{1}{x^2} = \frac{16}{(100 - x)^2}$$
Or $\frac{1}{x^2} = \frac{4}{(100 - x)^2}$

Or
$$\frac{1}{x} = \frac{4}{100 - x}$$

Or
$$5x = 100$$
 or $x = 20$ cm

714 (b)

Because size of the aperture decreases

715 (d)

Line and band spectrum are also known as atomic and molecular spectra respectively

$$I_{\theta} = I_o \cos \theta = I_o \cos 60^{\circ} = \frac{I_o}{2}$$

717 (b)

Wave length of the electron wave be 10 ×

Using
$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow E = \frac{h^2}{\lambda^2 \times 2m}$$

$$= \frac{(6.63 \times 10^{-34})^2}{(10 \times 10^{-12})^2 \times 2 \times 9.1 \times 10^{-31}} Joule$$

$$= \frac{(6.63 \times 10^{-34})^2}{(10 \times 10^{-12})^2 \times 2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19}}$$

718 (a)

A plano-convex lens behaves as a concave mirror if it's one surface (curved) is silvered. The rays refracted from plane surface are reflected from curved surface and again refract from plane surface. Therefore, in this lens two refractions and one reflection occur.

Let the focal length of silvered lens is F.

$$\frac{1}{F} = \frac{1}{f} + \frac{1}{f} + \frac{1}{f_m} = \frac{2}{f} + \frac{1}{f_m}$$

Where f = focal length of lens before silvering f_m =focal length of spherical mirror.

$$\therefore \frac{1}{F} = \frac{2}{f} + \frac{2}{R} \qquad \dots (i)$$

$$(\because R = 2f_m)$$

$$now, \frac{1}{f} = (\mu - 1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \dots (ii)$$

here,
$$R_1 = \infty$$
, $R_2 = 30$ cm

$$\therefore \frac{1}{f} = (1.5 - 1) \left(\frac{1}{\infty} - \frac{1}{30} \right)$$

$$\Rightarrow \frac{1}{f} = -\frac{0.5}{30} = -\frac{1}{60}$$

$$\Rightarrow f = -60 cm$$

Hence from eq (i)

$$\frac{1}{F} = \frac{2}{60} + \frac{2}{30} = \frac{6}{60}$$

$$F = 10 cm$$

Again given that,

Size of object = size of image

$$\Rightarrow 0 = 1$$

$$\therefore m = -\frac{v}{u} = \frac{l}{0} \Longrightarrow \frac{v}{u} = -1$$

$$\Rightarrow v = -u$$

Thus, from lens formula

$$\frac{1}{F} = \frac{1}{v} - \frac{1}{u}$$

$$\frac{1}{10} = \frac{1}{-u} - \frac{1}{u}$$

$$\frac{1}{10} = -\frac{2}{u}$$

$$\therefore u = -20 cm$$

Hence, to get a real image, object must be placed at a distance 20 cm on the left side of lens.

719 (a)

The critical angle (θ_c) is given by

$$\theta_C = \sin^{-1}\left(\frac{n_2}{n_1}\right)$$

Where n_2 is refractive index of less denser medium and n_1 is refractive index of the denser medium.

Also,
$$\frac{n_2}{n_1} = \frac{v_2}{v_1}$$

$$\therefore \ \theta_C = \sin^{-1}\left(\frac{v_2}{v_1}\right)$$

Given, $v_2 = 2 \times 10^8 \, \text{ms}^{-1}$

$$v_1 = 2.4 \times 10^8 \ \mathrm{ms^{-1}}$$

$$\theta_C = \sin^{-1}\left(\frac{2 \times 10^8}{2.4 \times 10^8}\right)$$

$$\theta_C = \sin^{-1}\left(\frac{5}{6}\right)$$

720 (b)

Given, $A = 60^{\circ}$

$$i = i' = \frac{3}{4}, A = 45^{\circ}$$

$$\therefore i + i' = A + \delta$$

Or
$$90^{\circ} = 60^{\circ} + \delta$$

$$\delta = 30^{\circ}$$

Note that i = i' is the condition for minimum deviation

Hence, $\delta = 30^{\circ} = \delta_{\min}$

721 (a)

The refractive index $\mu = \frac{1}{\sin \theta_c}$

$$\mu = \frac{1}{\sin 45^{\circ}} = \sqrt{2} = 1.414$$

Because the refractive index for green is 1.44 and blue is 1.47. So, red alone will be transmitted.

722 (c)

$$P = \frac{1}{f} \Rightarrow f = \frac{1}{0.5} = 2m$$

According to Rayleigh scattering formula intensity of scattered light, $I \propto \frac{1}{(wavelength \lambda)^4}$

or
$$I \propto (\text{frequency } f)^4 :: \frac{I_1}{I_2} = \left(\frac{f_1}{f_2}\right)^4$$

$$\frac{f_1}{f_2} = \left(\frac{l_1}{l_2}\right)^{1/4} = \left(\frac{256}{81}\right)^{1/4} = \frac{4}{3}$$

725 (a)

$$\frac{1}{v} - \frac{1}{-f/2} = \frac{1}{f}$$
1 1 2

Again,
$$m = \frac{v}{u} = \frac{-f}{-f/2} = 2$$

Clearly, the image is virtual and double the size

726 (c)

Longitudinal chromatic aberration $= \omega f = 0.08 \times 20 = 1.6cm$

$$= \omega f = 0.08 \times 20 = 1.6cn$$

727 (d)

Maximum lateral displacement is t.

728 (d)

From graph it is clear that $\tan 30^\circ = \frac{\sin r}{\sin t}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{\sin r}{\sin i} = \frac{1}{\mu} \Rightarrow \mu = \sqrt{3}$$

Also
$$v = \frac{c}{\mu} = nc \Rightarrow n = \frac{1}{\mu} = \frac{1}{\sqrt{3}} = (3)^{-1/2}$$

729 (d)

Ray optics is valid when size of the objects is much larger than the order of wavelength of light

If end A of rod acts an object for mirror then it's image will be A' and if

$$u=2f-\frac{f}{3}=\frac{5f}{3}$$

So by using
$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\Rightarrow \frac{1}{-f} = \frac{1}{v} + \frac{1}{\frac{-5f}{3}} \Rightarrow v = -\frac{5}{2}f$$

 $\therefore \text{ Length of image} = \frac{5}{2}f - 2f = \frac{f}{2}$

731 (d)

Diminished erect image is produced only by a concave lens

732 (a)

$$m = \frac{f}{f - u}$$

$$2 = \frac{-0.2}{-0.2 - u}$$
Or $2 = \frac{0.2}{0.2 + u}$ or $0.4 + 2u = 0.2$
Or $2u = 0.2 - 0.4 = -0.2$
Or $u = -0.1$ m

733 (a)

$$\delta_m = (\mu - 1)(2r) = (1.5 - 1)2r = 0.5 \times 2r = r$$

735 (c)

For reading purpose

$$u = -25 \text{ cm}, v = -50 \text{ cm}, f = ?$$

$$\therefore \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{50} + \frac{1}{25} = \frac{1}{50}$$

$$P = \frac{100}{f} = +2D$$

For distinct vision,

f' =distance of far point = -3m

$$P = \frac{1}{f'} = -\frac{1}{3}D = -0.33 D$$

736 (b)

As no scattering of light occurs. Space appears black

738 (c)

For total internal reflection $\theta > C$ $\Rightarrow \sin \theta > \sin C \Rightarrow \sin \theta > \frac{1}{\mu}$ or $\mu > \frac{1}{\sin \theta} \Rightarrow \mu > \frac{1}{\sin 45^{\circ}} \Rightarrow \mu > \sqrt{2} \Rightarrow \mu > 1.41$

739 (a)

By using $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where $\mu_1 = \frac{4}{3}$, $\mu = 1$, u = -6cm, v = ?

On putting values v = -5.2 cm

740 (c)

For an achromatic combination $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ *i. e.*, 1 convex lens and 1 concave lens

741 (a)

$$\mu_m = \frac{c}{v} = \frac{n\lambda_a}{n\lambda_m} = \frac{\lambda_a}{\lambda_m}$$

742 (b)

When object is placed, between focus and pole, image formed is erect, virtual and enlarged

743 (b)

$$\lambda_{medium} = \frac{\lambda_{vacuum}}{\mu}$$

744 (b)

The line of sight of the observer remains constant making an angle of 45° with the normal

$$\sin \theta = \frac{h}{\sqrt{h^2 + (2h)^2}} = \frac{1}{\sqrt{5}}$$

$$\mu = \frac{\sin 45^\circ}{\sin \theta}$$

$$= \frac{1/\sqrt{2}}{1/\sqrt{5}} = \sqrt{\left(\frac{5}{2}\right)}$$

745 (b)

 $\delta_m = (\mu - 1)A$. A =angle of prism

746 (d)

From the following figures it is clear that real image (*I*) will be formed between *C* and *O*

747 (c)

Magnifying power of a microscope $m \propto \frac{1}{f}$

- Since $f_{\text{violet}} < f_{\text{red}}$; : $m_{\text{violet}} > m_{\text{red}}$
- 748 (a) $f_o - f_e = 9 \text{ cm} \text{ and } f_e = f_o - 9 = 15 - 9 = 6 \text{ cm}$ $\Rightarrow m = \frac{f_o}{f_e} = \frac{15}{6} = 2.5$
- |749 **(c)**

Snell's law in vector form is $\hat{\imath} \times \hat{n} = \mu(\hat{r} \times \hat{n})$

750 (c)

For lens (1) $\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{(-8)} = \frac{1}{v} - \frac{1}{(-12)}$ $\Rightarrow v = 24 \ cm \ i.e.$ image A'B' is obtained 6 cm before the lens 2 or at the focus of lens 2. Hence final image formed by lens 2 will be real enlarged and it is obtained at ∞

751 (a)

At
$$u = f$$
, $v = \infty$

At u = 0, v = 0 (*i. e.* object and image both lies at pole)

Satisfying these two conditions, only option (a) is correct

752 (c)

Here, angle of incidence, $i = 60^{\circ}$

: Angle of deviation

$$\delta = 180^{\circ} - (i+r)$$

= 180° - 2i (As i = r)
= 180° - 2 × 60° = 60°

754 (d)

When light travels from rarer to denser medium its wavelength reduces. Wavelength in water

$$= \frac{\lambda_a}{\mu_w} = \frac{500}{(4/3)} = 375 \text{ nm} = 376 \text{ nm}$$
 (Blue colour)

755 (b)

Given wavelength does not belong to green therefore all light will be absorbed

756 (a)

For convex lens (for real image) $u + v \ge 4f$ For u = 2f, v is also equal to 2f

Hence u + v = 4f

757 (d)

Deviation = zero

So,
$$\delta = \delta_1 + \delta_2 = 0$$

$$(\mu_1 - 1)A_1 + (\mu_2 - 1)A_2 = 0$$

$$A_2(1.75-1) = -(1.5-1)15^{\circ}$$

$$A_2 = -\frac{0.5}{0.75} \times 15^\circ \Rightarrow A_2 = -10^\circ$$

758 (d)

$$\delta = (360 - 2\theta) = (360 - 2 \times 60) = 240^{\circ}$$

759 (c)

$$\frac{1}{-30} + \frac{1}{v} = \frac{1}{30}$$
Or $\frac{1}{v} = \frac{2}{30} = \frac{1}{15}$

Or
$$v = 15$$
 cm

760 (a)

$$u \propto \frac{1}{2}$$

 $\mu_{water} < \mu$

 $\lambda_{\text{domer}} < \lambda_{\text{water}}$ *ie*, wavelength decreases.

761 (c)

Let *r* be the radius of circle through which other objects become visidble. The rays of light must be incident at critical angle C

$$\sin C = \frac{1}{\mu} = \frac{r}{\sqrt{r^2 + h^2}}$$

$$u^2r^2 = r^2 + h^2$$

$$(\mu^2 - 1)r^2 = h^2$$

$$r = \frac{h}{\sqrt{\mu^2 - 1}}$$

Diameter $2r = \frac{2h}{\sqrt{\mu^2 - 1}}$

762 (d)

Here u = mf

For divergent lens (concave)

$$\therefore v = \frac{mf}{m+1}$$

Now magnification $=\frac{v}{u}=\frac{mf}{m+1}\times\frac{1}{mf}=\frac{1}{m+1}$

763 (a)

For largest magnification focal length of eye lens should be least

764 (d)

Convex lens, glass slab, prism and glass sphere they all disperse the light

765 (b)

In continuous spectrum all wavelength are present

766 (a)

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$\Rightarrow -\frac{1}{u^2} \frac{du}{dt} - \frac{1}{v^2} \frac{dv}{dt} = 0$$

$$\Rightarrow \frac{dv}{dt} = -\frac{v^2}{u^2} \left(\frac{du}{dt}\right)$$

But
$$\frac{v}{u} = \frac{f}{u - f}$$

$$\therefore \frac{dv}{dt} = -\left(\frac{f}{u - f}\right)^2 \left(\frac{du}{dt}\right)$$

$$=\left(\frac{0.2}{-2.8-0.2}\right)^2 \times 15 = \frac{1}{15} \text{ms}^{-1}$$

767 (b)

During minimum deviation the ray inside the prism is parallel to the base of the prism in case of an equilateral prism.

768 (a)

The critical angle for region II and III

$$\sin C = \frac{\mu_{\text{III}}}{\mu_{\text{II}}} = \frac{\frac{n_0}{2}}{\frac{n_0}{\sqrt{2}}} = \frac{1}{\sqrt{2}}$$

$$ie. \angle C = 45^{\circ}$$

The ray, if incident at 45° at the interface of II and III it will be totally internally reflected.

Now, from Snell's lay in region I and II.

$$n_0 \sin \theta = \frac{n_0}{\sqrt{2}} \sin C$$

$$\operatorname{Or} \sin \theta = \frac{1}{\sqrt{2}} \times \sin 45^\circ$$

$$\operatorname{Or} \sin \theta = \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$$

$$\operatorname{Or} \sin \theta = \frac{1}{2}$$

$$\operatorname{Or} \theta = 30^\circ$$

769 (a)

(i)When angle of prism is small and angle of incidence is also small, the deviation is given by $\delta = (\mu - 1)A$. Net deviation by the prism is zero. So,

$$\delta_1 + \delta_2 = 0$$

Or
$$(\mu_1 - 1)A_1 + (\mu_2 - 1)A_2 = 0$$

Here, μ_1 and μ_2 are the refractive indices for crown and flint glass respectively

Hence,
$$\mu_1 = \frac{1.51 + 1.49}{2} = 1.5$$
 and $\mu_2 = \frac{1.77 + 1.73}{2} = 1.75$

This gives
$$A_2 = -4^{\circ}$$

Hence, angle of flint glass prism is 4°. Negative sign shows that flint glass prism is inverted with respect to the crown glass prism

(ii)Net dispersion due to the two prism is

=
$$(\mu_{b_1} - \mu_{r_1})A_1 + (\mu_{b_2} - \mu_{r_2})A_2$$

= $(1.51 - 1.49)(6^\circ) + (1.77 - 1.73)(-4^\circ)$
= -0.04°

770 (b)

Critical angle from region III to region IV

$$\sin \theta_C = \frac{n_0/8}{n_0/6} = \frac{3}{4}$$

Now applying Snell's law in region I and region III

$$n_0 \sin \theta = \frac{n_0}{6} \sin \theta_C$$

Or
$$\sin \theta = \frac{1}{6} \sin \theta_C = \frac{1}{6} \left(\frac{3}{4}\right) = \frac{1}{8}$$

$$\therefore \theta = \sin^{-1}\left(\frac{1}{8}\right)$$

771 (d)

At point A.
$$\frac{\sin 30^{\circ}}{\sin r} = \frac{1}{1.44}$$

$$\Rightarrow r = \sin^{-1}(0.72)$$
 also $\angle BAD = 180^{\circ} - \angle r$

In rectangular ABCD, $\angle A + \angle B + \angle C + \angle D =$ 360°

$$\Rightarrow (180^{\circ} - r) + 60^{\circ} + (180^{\circ} - r) + \theta = 360^{\circ}$$
$$\Rightarrow \theta = 2[\sin^{-1}(0.72) - 30^{\circ}]$$

A bifocal lens consist of both convex and concave lenses with lower part is convex

773 (b)

Diameter of image $d = \left(0.5 \times \frac{\pi}{180}\right) \times 500 \ mm =$

774 (d)

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$2.5 = \frac{1}{-0.75} - \frac{1}{u} \text{ or } \frac{1}{u} = -\frac{100}{75} - \frac{25}{10}$$

$$\text{Or } \frac{1}{u} = -\frac{4}{3} - \frac{5}{2} \text{ or } \frac{1}{u} = \frac{-8 - 15}{6} = -\frac{23}{6}$$

Or
$$\frac{1}{y} = -\frac{4}{3} - \frac{5}{2}$$
 or $\frac{1}{y} = \frac{-8 - 15}{6} = -\frac{23}{6}$

Or
$$u = -\frac{6}{23}$$
m = -0.26m

775 (b)

$$f = \frac{R}{2}$$
 and $R = \infty$ for plane mirror

$$A = r + 0 \Rightarrow r = 30^{\circ}$$

$$\therefore \mu = \frac{\sin i}{\sin 45^{\circ}} = \sqrt{2}$$

$$\therefore \mu = \frac{\sin i}{\sin r} = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = \sqrt{2}$$

777 **(b)**
$$0 = \sqrt{I_1 I_2} = \sqrt{4 \times 16} = 8 \text{ cm}$$

In given images, *P*, *Q* and *R* lenses in contact for *P* combination of lenses

$$\frac{1}{F_P} = \frac{1}{f} + \frac{1}{f} = \frac{2}{f}$$
$$F_P = \frac{f}{2}$$

Similarly for Q and R combination

$$F_Q = \frac{f}{2}$$
$$F_R = \frac{f}{2}$$

Then P:Q:R=1:1:1

780 **(b)**

For total internal reflection from glass-air interface, critical angle *C* must be less than angle of incidence.

ie
$$C < i$$

or $C < 45^{\circ}$ (: $\angle i = 45^{\circ}$)
but $n = \frac{1}{\sin C} \Rightarrow C = \sin^{-1}\left(\frac{1}{n}\right)$

781 (b)

Incident ray and finally reflected ray are parallel to each other means $\delta=180^\circ$

From
$$\delta = 360 - 2\theta$$

 $\Rightarrow 180 = 360 - 2\theta$
 $\Rightarrow \theta = 90^{\circ}$

782 **(d)**

$$f = \frac{R}{2(\mu - 1)}, f' = \frac{R}{(\mu - 1)} \Rightarrow f' = 2f$$

783 **(c)**

$$f \propto \frac{1}{\mu - 1} \text{ and } \mu \propto \frac{1}{\lambda}$$

Since
$$m = \frac{f_o}{f_e}$$

Also
$$m = \frac{\text{Angle subtended by the image}}{\text{Angle subtended by the object}}$$

$$\therefore \frac{f_o}{f_e} = \frac{\alpha}{\beta} \Rightarrow \alpha = \frac{f_o \times \beta}{f_e} = \frac{60 \times 2}{5} = 24^{\circ}$$

785 **(b)**

$$5 \times 10^{-4} = \frac{I \cos 60^{\circ}}{200 \times 200}$$

Or
$$I = 5 \times 10^{-4} \times 4 \times 10^{4} \times 2 = 40 \text{ cd}$$

786 (d)

If final image is formed at least distance of distinct vision, magnification

$$=1+\frac{D}{f}$$

Or magnification

$$=1+\left(\frac{25}{5}\right)=6$$

787 (b)

Power of lens is reciprocal of its focal length. Power of combined lens is

788 (c)

As
$$u \to f$$
, $v \to \infty$; $u \to \infty$, $v \to f$

789 (c)

The walls will act as two mirrors inclined to each other at 90° and so will form $\left(\frac{360}{90} - 1\right) = 4$

1, i.e., 3 images of the person. Now these images with person will act as objects for the ceiling mirror and so ceiling mirror will form 4 images further. Therefore total number of images formed = 3 + 3 + 1 = 7

Note: He can see, 6 images of himself

790 (b)

Final image formed by astronomical telescope is inverted not erect

791 (a)

$$m_{L} = 4$$

$$m_A = (m_1)^2$$
 so that $A' = A_0 \times 16 = 1600 \text{ cm}^2$

792 (d

Velocity and wavelength change but frequency remains same

793 (b)

According to Rayleigh's law of scattering, intensity scattered is inversely proportional to the forth power of wavelength. So red is least scattered and sun appears Red

794 (b)

Angular description,

$$\delta_b - \delta_r = (\mu_b - \mu_r)A$$

= (1.659 - 1.641)5°
= 0.09°

795 (a)

$$(1)M = -\frac{f_0}{f_e} \left(1 + \frac{f_e}{D} \right)$$

$$M = -\frac{200}{5} \left(1 + \frac{5}{25} \right)$$

$$M = -40\left(1 + \frac{1}{5}\right) = -40 \times \frac{6}{5} = -48$$

(2)
$$M = \frac{f_0}{f_e} = -\frac{200}{5} = -40$$

796 (c)

For lens u = 30 cm, f = 20 cm, hence by using

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{+20} = \frac{1}{v} - \frac{1}{-30} \Rightarrow v = 60 \text{ cm}$$

The final image will coincide the object, if light ray falls normally on convex mirror as shown. From figure it is seen clear that separation between lens and mirror is 60 - 10 = 50 cm

797 **(a)**

Optical fibres are used to send signals from one place to another

798 (a)

When light enters water from vacuum, then wavelength of light

$$\lambda' = \frac{\lambda}{\mu}$$

For water, $\mu > 1$

So,

$$\lambda' < \lambda$$

Hence, wavelength of light decreases, when light enter to water from vacuum.

799 (b)

$$\mu = \frac{c}{v}$$

$$\therefore \frac{\mu}{\mathfrak{u}'} = \frac{v'}{v}$$

$$\frac{1.5}{1.8} = \frac{v'}{2 \times 10^8}$$

$$v' = \frac{3 \times 10^8}{1.8} = 1.67 \times 10^8 \text{ms}^{-1}$$

800 (c

The dispersion produced by a spherical surface depends on it's radius of curvature. Hence, a lens will not exhibit dispersion only if it's two surfaces have equal radii, with one being convex and the other concave

801 (b)

Here, angular deviation

$$\delta = 2\pi - 2\theta$$

$$=2\pi-2\times\frac{\pi}{2}=\pi$$

Hence, final emergent ray is parallel to incident ray.

802 (a)

When the screen is equally illuminated,

$$E_1 = E_2$$

Or
$$\frac{l_1}{r_1^2} = \frac{l_2}{r_2^2}$$
 or $\frac{l_1}{l_2} = \frac{r_1^2}{r_2^2} = \frac{30 \times 30}{50 \times 50} = \frac{9}{25}$

803 (c)

$$C = \sin^{-1}\left(\frac{1}{\mu}\right) = \sin^{-1}\left(\frac{3}{4}\right)$$

806 (b)

$$\sin C = \frac{1}{\mu} = \frac{1}{\sin r' / \sin i} = \frac{\sin i}{\sin r'}$$

As is clear as shown in figure

$$\angle CBD = 90^{\circ}$$

$$...90^{\circ} - r + 90^{\circ} - r' = 90^{\circ}$$

Or
$$r' = 90^{\circ} - r$$

$$\sin C = \frac{\sin i}{\sin(90^{\circ} - r)} = \frac{\sin i}{\cos r}$$

$$= \frac{\sin i}{\cos i} = \tan i \ (\because i = r)$$

$$\cos i$$

$$C = \sin^{-1}(\tan i) = \sin^{-1}(\tan r)$$

807 (a)

Only one converging point is found by this lens. Therefore only one image is formed

808 (d)

The rainbow is formed due to the dispersion of white light from the sun and due to one or two total internal reflections from the water droplets behaving like prisms. The rainbow is not seen after every rain necessarily.

809 (b)

Sun is at infinity, *i. e.*, $u = \infty$ so from mirror formula we have $\frac{1}{f} = \frac{1}{-32} + \frac{1}{(-\infty)} \Rightarrow f = -32$ cm

When water is filled in the tank upto a height of 20 *cm*, the image formed by the mirror will act as virtual object for water surface. Which will form

it's image at I such that $\frac{Actual height}{Apparent height}$ =

$$\frac{\mu_{\omega}}{\mu_a}$$
, i. e., $\frac{BO}{BI} = \frac{4/3}{1}$

$$\Rightarrow BI = BO \times \frac{3}{4} = 12 \times \frac{3}{4} = 9 cm$$

810 (d)

Focal length of eye lens = -2 mSo, power of lens = $\frac{1}{f} = \frac{1}{-2}$ = -0.5 D (short-sighted)

811 (c)

Minimum angular separation $\Delta\theta = \frac{1}{R.P.} = \frac{1.22 \,\lambda}{d}$ $= \frac{1.22 \times 5000 \times 10^{-10}}{2} = 0.3 \times 10^{-6} rad$

814 (b)

$$\tan 45^\circ = \frac{h}{60} \Rightarrow h = 60 \ m$$

817 (a)

Magnification
$$m = \frac{v}{u}$$

$$-4 = \frac{v}{u}$$

Or
$$v = -4u$$

Now,
$$v - u = 10$$

$$0r - 5u = 10$$

Or
$$u = -2 \,\text{m}$$

$$v = 8 \text{ m}$$

Again,
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

Or
$$\frac{1}{f} = \frac{1}{8} - \frac{1}{-2}$$

Or
$$\frac{1}{f} = \frac{1}{8} + \frac{1}{2}$$
$$= \frac{1+4}{8} = \frac{5}{8}$$

Or
$$f = \frac{8}{5}$$
 m = 1.6 m

818 (c)

$$m = \pm 3$$
, using $m = \frac{f}{f+u}$

For virtual image
$$3 = \frac{f}{f-8}$$
 ...(i)

For real image
$$-3 = \frac{f}{f-16}$$
 ...(ii)

Solving (i) and (ii) we get f = 12 cm

When monochromatic light pass through a prism, the red colour suffers minimum deviation.

820 (b)

$$\mu \propto \frac{1}{\lambda}, \lambda_r > \lambda_v$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 or $\frac{1}{v} = -\frac{1}{u} + \frac{1}{f}$

Now, compare with y = mx + c

Therefore graph is a straight line having negative slope

822 (a)

Dispersion take place because the refractive index of medium for different colours is different, for example, red light bends less than violet, refractive index of the material of the prism for red light is less than that for violet light. Equivalently, we can say that red light travels faster than violet light in a glass prism

823 (a)

Lens maker's formula

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Where, $R_2 = \infty$, $R_1 = 0.3 \, m$

$$\therefore \frac{1}{f} = \left(\frac{5}{3} - 1\right) \left(\frac{1}{0.3} - \frac{1}{\infty}\right)$$

$$\Rightarrow \frac{1}{f} = \frac{2}{3} \times \frac{1}{0.3}$$

$$\Rightarrow \frac{1}{f} = \frac{1}{3} \times \frac{1}{0.3}$$

or
$$f = 0.45 \, m$$

824 (b)

Magnifying power of astronomical telescope

$$m = -\frac{f_o}{f_e} \left(1 + \frac{f_e}{D} \right) = -\frac{200}{5} \left(1 + \frac{5}{25} \right) = -48$$

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Also, by Cauchy's formula

$$\mu = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \cdots.$$

 $\lambda_{\rm blue} < \lambda_{\rm red}$

 $\mu_{blue} > \mu_{red}$

Hence, $f_{\rm red} > f_{\rm blue}$

Sunlight consists of all the wavelength with some black lines

827 (b)

 ω depend only on nature of material

Image will be real

We know that

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\Rightarrow \frac{v}{f} = 1 - \frac{v}{u} \quad (\because u \text{ is negative})$$

$$v = f(m+1)$$

829 (a)

Apparent shift =
$$t \left(1 - \frac{1}{\mu} \right)$$

 $8 = 40 \left(1 - \frac{1}{\mu} \right)$ or $\frac{1}{5} = 1 - \frac{1}{\mu}$
Or $\frac{1}{\mu} = \frac{4}{5}$ or $\mu = \frac{5}{4}$

830 (a)

$$f = -\frac{0.6}{2} = -0.3 \text{ m} = -30 \text{ cm}$$

$$\frac{1}{v} + \frac{1}{-10} = \frac{1}{-30}$$

$$\frac{1}{v} = \frac{1}{10} - \frac{1}{30} = \frac{3-1}{30}$$

$$\text{Or } v = \frac{30}{2} \text{ cm} = 15 \text{ cm}$$

$$m = -\frac{v}{u} = -\frac{15}{-10} = 1.5$$

Object lies between principal focus and pole. So, the image is virtual and erect

831 (c)

At minimum distance, incidence is normal.

Therefore, $E = \frac{I}{r^2} = \frac{250}{6^2} = 6.94 \text{ lux}$

832 (b)

If object in a denser medium is seen from a rarer medium then image of object will appear at a leaser distance. The distance between object and its image, called as normal shift is given by

$$x = t \left[1 - \frac{1}{u} \right]$$

Here, $t = 6 \text{ cm}, \mu = 1.5$

$$x = 6 \left[1 - \frac{1}{1.5} \right]$$
$$= 6 \left[\frac{0.5}{1.5} \right] = 2 \text{ cm}$$

833 (d)

$$\mu = \frac{9}{8}$$

$$\sin C = \frac{1}{\omega w \mu_g} = \frac{8}{9}$$

$$C = \sin^{-1} \left(\frac{8}{9}\right)$$

$$C = \sin^{-1}\left(\frac{1}{9}\right)$$

$$\theta > \sin^{-1}\frac{8}{9}$$

Power of combination
$$P = P_1 + P_2$$

= $+20 - 10 = +10D$

$$F = \frac{1}{P} = \frac{1}{10}$$
m = 10 cm

For image at infinity

$$M = \frac{D}{F} = \frac{25}{10} = 2.5$$

835 (a)

The black lines in solar spectrum are called Fraunhoffer lines

836 (b)

Time of exposure
$$\propto (f. \text{ number})^2 \Rightarrow \frac{t_2}{t_1} = \left(\frac{5.6}{2.8}\right)^2 =$$

4

$$t_2 = 4t_1 = 4 \times \frac{1}{200} = \frac{1}{50} sec = 0.02 sec$$

837 (c)

From ray diagram

$$A = C + \theta$$
 for TIR at AC

$$\theta > C$$
 so $A > 2C$

839 (a)

$$|m| \propto \frac{1}{f_o f_e}$$

840 (b)

$$I_{\text{edge}} = \frac{L\cos\theta}{(h^2 + r^2)} = \frac{Lh}{(h^2 + r^2)^{3/2}}$$

For maximum intensity $\frac{dI}{dh} = 0$

Applying this condition have get $h = \frac{r}{\sqrt{2}}$

841 (b)

We know that

 $\mu = \frac{\text{velocity of light in vacuum}}{\text{velocity of light in water}}$

 $\frac{4}{3} = \frac{1}{\text{velocity in light in water}}$

 \Rightarrow velocity of light in water = 2.25 $\times~10^{10}\,\text{cm}\text{s}^{-1}$

Time taken = $\frac{500 \times 100}{2.25 \times 10^{10}}$ = 2.22 × 10⁻⁶ s

Equivalent optical path = $\mu \times$ diatance travelled in water

$$=\frac{4}{3}\times500=666.64$$
 m

842 (c)

Refractive index of refracted medium w.r.t.

incident medium

 $= \frac{\text{Speed in incident medium}}{\text{Speed in refracted medium}}$

843 (a)

$$\therefore \mu = a + \frac{b}{\lambda^2}$$
 [Cauchy's equation]

and dispersion
$$D = -\frac{d\mu}{d\lambda} \Rightarrow D = -(-2\lambda^{-3})b = \frac{2b}{\lambda^3}$$

$$\Rightarrow D \propto \frac{1}{\lambda^3} \Rightarrow \frac{D'}{D} \left(\frac{\lambda}{\lambda'}\right)^3 = \left(\frac{\lambda}{2\lambda}\right)^3 = \frac{1}{8} \Rightarrow D' = \frac{D}{8}$$

844 (d)

By using lens formula

$$\frac{1}{-16} = \frac{1}{v} - \frac{1}{(-12)} \Rightarrow \frac{1}{v} = \frac{1}{12} - \frac{1}{16} = \frac{4-3}{48} \Rightarrow v$$

$$= 48 \text{ cm}$$

845 (a)

Focal length in air is given by

$$\frac{1}{f_{aa}} = \left(a\mu_{g} - 1\right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$$

The focal length of lens immersed in water is given by

$$\frac{1}{f_1} = \left({_l}n_{\rm g} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

When, R_1 , R_2 are radii of curvatures of the two surfaces of lens and $_ln_{\rm g}$ is refractive index of glass with respect to liquid.

Also,
$$l\mu_g = \frac{a^n g}{a a^n l}$$

Given, a
$$an_g = 1.5$$
, $f_{aa} = 12$ cm, a $an_l = \frac{4}{3}$

$$\therefore \frac{f_l}{f_{aa}} = \frac{\binom{a \ a n_g - 1}{\binom{l n_g - 1}{l}}$$

$$\frac{f_1}{12} = \frac{(1.5-1)}{\left(\frac{1.5}{4/3}-1\right)} = \frac{0.5 \times 4}{0.5}$$

$$\Rightarrow f_1 = 4 \times 12 = 48 \text{ cm}$$

846 (b)

From Rayleigh scattering concept

$$I \propto \frac{1}{\lambda^4} \operatorname{or} \frac{l_1}{l_2} = \left(\frac{\lambda_2}{\lambda_1}\right)^4$$
$$\left(\lambda_2\right)^4 \qquad 1$$

$$or \quad \left(\frac{\lambda_2}{\lambda_1}\right)^4 = \frac{1}{4}$$

or
$$\frac{\lambda_2}{\lambda_1} = \left(\frac{1}{2}\right)^{1/2}$$

or
$$\frac{\lambda_1}{\lambda_2} = \frac{\sqrt{2}}{1}$$

847 **(a**)

$$\frac{D}{E}$$
 or $\frac{25}{E}$

848 **(**a

Focal length of lens

$$\frac{1}{f} = (\mu - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

For equi-convex lens,

$$R_1 = +R$$
, $R_2 = -R$

$$\therefore \frac{1}{f} = (\mu - 1) \left(\frac{1}{R} - \frac{1}{-R} \right)$$

$$\frac{1}{f} = (\mu - 1) \left(\frac{2}{R}\right)$$

$$f = \frac{R}{2(\mu - 1)}$$

$$f < R$$
, so, $2(\mu - 1) < 1$

$$(\mu-1)<\frac{1}{2}$$

$$(\mu - 1) < 0.5$$

 $\mu < 1.5$

Focal length of convex lens is positive. So, μ cannot be negative, hence should be greater than zero but less than 1.5

849 (c)

Critical angle =
$$\sin^{-1}\left(\frac{1}{\mu}\right)$$

$$\therefore \theta = \sin^{-1}\left(\frac{1}{\mu_{\lambda_1}}\right) \text{ and } \theta' = \sin^{-1}\left(\frac{1}{\mu_{\lambda_2}}\right)$$

Since $\mu_{\lambda_2} > \mu_{\lambda_1}$, hence $\theta' < \theta$

850 (d)

 $I_1D_1^2t_1 = I_2D_2^2t_2$ [D is diameter of aperature]

Here *D* is constant and $I = \frac{L}{r^2}$

So
$$\frac{L_1}{r_1^2} \times t_1 = \frac{L_2}{r_2^2} \times t_2 \Rightarrow \frac{60}{(2)^2} \times 10 = \frac{120}{(4)^2} \times t \Rightarrow 20 \ s = t$$

851 **(b)**

$$A = r + 0$$
 and $\mu = \frac{\sin i}{\sin r}$

$$\Rightarrow \mu = \frac{\sin 2A}{\sin A}$$

$$= \frac{2\sin A\cos A}{\sin A} = 2\cos A$$

852 (b)

 $f_o > f_e$ for telescope

853 (a)

Subtract the given time from $\frac{hr. min.}{11:60}$

855 (c)

The image of an object in white light formed by a lens is usually coloured and blurred. This defect of

image is called chromatic aberration and arises due to the fact that focal length of a lens is different for different colours. In case of two thin lenses in contact, the combination will be free from chromatic aberration. The lens combination which satisfies this condition is called achromatic lenses.

856 (d)

When a ray of light moves from one medium to other, its velocity changes. This change depends on refractive index of the medium. Light travels from denser to rarer medium, *ie.*, from medium of higher refractive index to lower refractive index. So, in second (rarer) medium, its velocity increases.

857 (b)

According to the following ray diagram length of mirror

$$d = f_1 - f_2 = 7.5 - 7.3 = 0.2 cm$$

859 (b)

From figure

$$A = r_1 + c = r_1 + \sin^{-1}\left(\frac{1}{\mu}\right)$$

$$\Rightarrow r_1 = 75 - \sin^{-1}\left(\frac{1}{\mu}\right)$$

From Snell's law At B

$$\mu = \frac{\sin i}{\sin r_1} \Rightarrow \sqrt{2} = \frac{\sin i}{\sin 30^{\circ}} \Rightarrow i = 45^{\circ}$$

860 (c)

Suppose the maximum height of the liquid is h for which the source is not visible

Hence radius of the disc

$$r = \frac{h}{\sqrt{\mu^2 - 1}}$$

861 **(a)**

$$\frac{\omega_1}{\omega_2} = -\frac{f_1}{f_2} = -\frac{2}{3}$$

862 **(a)**

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R} \Rightarrow \frac{1.5}{+OQ} - \frac{1}{(-OP)} = \frac{(1.5 - 1)}{+R}$$
On putting $OQ = OP, OP = 5R$

The atoms in the chromosphere absorb certain wavelengths of light coming from the photosphere. This gives rise to absorption lines 864 **(b)**

For passing the ray from prism, $\mu < cosec \, \frac{A}{2}$ $\mu < cosec \, \Big(\frac{90^\circ}{2}\Big)$ $\mu < \sqrt{2}$

$$\mu_{max} = \sqrt{2}$$

865 **(b)**

863 (a)

End *A* of the rod acts as an object for mirror and *A'* will be its image so u = 2f - l = 20 - 5 = 15 cm

$$\because \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \Rightarrow \frac{1}{-10} = \frac{1}{v} - \frac{1}{15} \Rightarrow v = -30 \text{ cm}$$
Now $m = \frac{\text{Length of image}}{\text{Length of object}} = \frac{(30-20)}{5} = 2$

Glass lens will disappear if $\mu_L = \mu_g$. Therefore, when a glass lens of refractive index 1.47 is immersed in glycerin whose refractive index is 1.473 (at 20°C), the glass lens look like disappeared

868 **(c)**In both *A* and *B*, the refracted ray is parallel to the base of prism

870 (a)

Focal length of the mirror remains unchanged

871 (d)

Resolving power of telescope = $\frac{d}{1.22 \lambda}$

872 (d)

$$L = v_o + u_e = \frac{u_o f_o}{(u_o - f_o)} + \frac{f_e D}{f_e + D}$$

$$\Rightarrow L = \frac{2 \times 1.5}{(2 - 1.5)} + \frac{6.25 \times 25}{(6.25 + 25)} = 11 \text{ cm}$$

873 (c)

It lamp is placed at the focus of concave mirror then we get parallel beam of light.

874 **(d)**

$$P = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

 μ decreases, P decreases and f increases

875 (c)

In case of a telescope if object and final image are at infinity then $m = \frac{f_0}{f}$

876 (a)

When two lenses of different powers are combined, the power of combination is sum of individual powers

$$P = P_1 + P_2 P = 3D + (-5D) = -2D$$

Also power =
$$\frac{1}{f}$$
 diopire

$$\therefore f = \frac{100}{P} = -\frac{100}{2}m = -50 m$$

From lens formula

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

Putting
$$f = -50 \, cm$$
, $u = -50 \, cm$

$$-\frac{1}{50} = \frac{1}{v} - \left(-\frac{1}{50}\right)$$

$$\Rightarrow v = -25 cm$$

Hence, image is formed at same side as object.

877 (c)

If nothing is said then it is considered that final image is formed at infinite and $m_{\infty}=$

$$\frac{(L_{\infty} - f_0 - f_e).D}{f_0 f_e} \simeq \frac{LD}{f_0 f_e}$$

$$\Rightarrow 400 = \frac{20 \times 25}{0.5 \times f_e} \Rightarrow f_e = 2.5 \text{ cm}$$

878 (b)

In telescope $f_o \gg f_e$ as compared to miscroscope

880 (b)

Light is travelling from glass to air. *ie*, form denser medium to rarer medium, so it will bend away from the normal, so $\theta_2 > \theta_1$.

881 (d)

When object is kept at centre of curvature. It's real image is also formed at centre of curvature

882 (b)

Huygen eyepiece satisfies the conditions for elimination of the chromatic aberration as well as spherical aberration.

883 (d)

Clearly,
$$2f = 20 \text{ cm or } f = 10 \text{ cm}$$

Now,
$$u = -15$$
 cm, $v = ?$

$$F = 10 \text{ cm}$$

$$\frac{1}{v} - \frac{1}{-15} = \frac{1}{10}$$

Or
$$\frac{1}{v} + \frac{1}{15} = \frac{1}{10}$$
 or $\frac{1}{v} = \frac{1}{10} - \frac{1}{15}$

Or
$$\frac{1}{v} = \frac{3-2}{30} = \frac{1}{30}$$
 or $v = 30$ cm

The charge in image distance is (30 - 20)cm ie,

884 (d)

$$P = P_1 + P_2$$

$$= \frac{100}{f_1} + \frac{100}{f_2}, \text{ both } f_1 \text{ and } f_2 \text{ are in cm.}$$

$$= \frac{100}{50} - \frac{100}{40}$$

$$=\frac{100}{50}-\frac{100}{40}$$

885 (c)

To see the container half-filled from top, water should be filled up to height *x* so that bottom of the container should appear to be raised upto height (21 - x)

As shown in figure apparent depth h' = (21 - x)Real depth h = x

$$\therefore \mu = \frac{h}{h'} \Rightarrow \frac{4}{3} = \frac{x}{21 - x} \Rightarrow x = 12 \ cm$$

886 (c)

When the ray passes into the rarer medium, the deviation is $\delta = \phi - \theta$. This can have a maximum value of $\left(\frac{\pi}{2} - C\right)$ for $\theta = C$ and $\phi = \frac{\pi}{2}$

When total internal reflection occurs, the deviation is $\delta = \pi - 2\theta$, the minimum value of θ being *C*. The maximum value of $\delta = \pi - 2C$

Here,
$$A = 60^{\circ}$$
, $\mu = \sqrt{2}$

$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} \qquad \dots (i)$$

Substituting given values in Eq. (i), we get

$$\sqrt{2} = \frac{\sin\left(\frac{60^{\circ} + \delta_m}{2}\right)}{\sin\left(\frac{60^{\circ}}{2}\right)}$$

Or
$$\sin\left(30^\circ + \frac{\delta_m}{2}\right) = \sqrt{2} \sin 30^\circ$$

Or
$$\sin\left(30^\circ + \frac{\delta_m}{2}\right) = \sqrt{2} \times \frac{1}{2} = \frac{1}{\sqrt{2}}$$

Or
$$\sin\left(30^\circ + \frac{\delta_m}{2}\right) = 45^\circ$$

Or
$$\left(30^{\circ} + \frac{\delta_m}{2}\right) = \sin 45^{\circ}$$

Or
$$\delta_m = 30^\circ$$

∴ Angle of incidnece
$$i = \frac{A + \delta_m}{2}$$

= $\frac{60^\circ + 30^\circ}{2} = 30^\circ$

888 (b)

$$m = \frac{v_o}{u_o} \left(1 + \frac{D}{f_e} \right) = m_o \left(1 + \frac{D}{f_e} \right)$$

$$\Rightarrow 30 = m_o \left(1 + \frac{25}{5} \right) = m_o \times 6 \Rightarrow m_o = 5$$

889 (a)

Here
$$d = 1 \, m, \lambda = 4538 \, \text{Å}$$

$$= 4.538 \times 10^{-7} m$$

Resolving limit
$$\theta = \frac{1.22\lambda}{1}$$

Resolving limit
$$\theta = \frac{1.22\lambda}{d}$$

$$= \frac{1.22 \times 4.538 \times 10^{-7}}{1}$$

$$= 5.54 \times 10^{-7} \text{ rad}$$

891 (a)

So, velocity of light in glass

$$V_g = \frac{V_m}{u}$$

$$V_m - V_g = V_m - \frac{V_m}{\mu}$$

$$\therefore 6.25 \times 10^7 = V_m \left(1 - \frac{1}{\frac{4}{3}} \right)$$

$$V_m = 6.25 \times 10^7 \times 4$$

$$= 2.5 \times 10^8 ms^{-1}$$

892 (c)

In fog, visible light is scattered more according to Rayleigh scattering, but scattering of infrared radiations is less due to high wavelengths, hence in fog, photographs of the objects taken with infrared radiations are clearer.

893 (d)

$$f = \frac{R}{2(\mu - 1)} \Rightarrow P = \frac{2(\mu - 1)}{0.2} = \frac{2(1.5 - 1)}{0.2}$$
$$= +5D$$

894 (b)

$$\mu = \frac{c}{v} = \frac{\sin i}{\sin r} = \frac{\sin 45^{\circ}}{\sin 30^{\circ}}$$

$$\Rightarrow v = \frac{3 \times 10^{8}}{\sqrt{2}} = 2.12 \times 10^{8} \text{ m/s}$$

895 (b)

Power of the system decreases due to separation between the lenses. So, the focal length increases

Resolving limit (minimum separation) $\propto \lambda$

$$\Rightarrow \frac{P_A}{P_B} = \frac{2000}{3000} \Rightarrow P_A < P_B$$

897 (d)

Size of object

$$h = \sqrt{h_1 h_2}$$

898 (b)

$$A = 60^{\circ}, \delta_m = 30^{\circ} \text{ so } \mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$\mu = \frac{\sin\left(\frac{60^\circ + 30^\circ}{2}\right)}{\sin\left(\frac{60^\circ}{2}\right)} = \frac{\sin 45^\circ}{\sin 30^\circ} = \sqrt{2}$$

Also
$$\mu = \frac{1}{\sin C} \Rightarrow C = \sin^{-1} \left(\frac{1}{\mu}\right) \Rightarrow C = 45^{\circ}$$

899 (b)

For real image v = 0

$$\therefore \operatorname{From} \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

900 (b)

As a convex lens alone can form a real images as well as a virtual images, therefore, the lens in the present question is a convex lens. Let f be the focal length of the lens and m be the magnification

In the first case, when image is real,

$$u = -16 \text{ cm}, v = (m \times 16) \text{cm}$$

As
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

As
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

 $\therefore \frac{1}{16m} + \frac{1}{16} = \frac{1}{f} \text{ or } 1 + \frac{1}{m} = \frac{16}{f} ...(i)$

In the second case, when image is virtual

$$u = -6 \text{ cm}, v = (-6 \text{ m})\text{cm}$$

From
$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{-6m} + \frac{1}{6} = \frac{1}{f}$$
 or $1 - \frac{1}{m} = \frac{6}{f}$...(ii)

Add Eq.(i) and Eq.(ii) we have

$$2 = \frac{22}{f}$$
 or $f = \frac{22}{2} = 11$ cm

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f} = \text{constant}$$
, so (c) is correct graph.

In plane mirror, size of the image is independent of the angle of incidence

903 (b)

Apparent depth of bottom

$$= \frac{H/4}{\mu_1} + \frac{H/4}{\mu_2} + \frac{H/4}{\mu_3} + \frac{H/4}{\mu_4}$$
$$= \frac{H}{4} \left(\frac{1}{\mu_1} + \frac{1}{\mu_2} + \frac{1}{\mu_3} + \frac{1}{\mu_4} \right)$$

904 (b)

As is clear from figure, $A = 30^{\circ}$, $i_1 = 60^{\circ}$

As the ray retraces its path on reflection at the silvered face, therefore,

$$i_2 = 0, r_2 = 0$$

$$\operatorname{As} r_1 + r_2 = A$$

$$r_1 + 0 = 30^{\circ}$$

Or
$$r_1 = 30^{\circ}$$

$$\mu = \frac{\sin i_1}{\sin r_1} = \frac{\sin 60^\circ}{\sin 30^\circ} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}$$

905 (c)

Time =
$$\frac{\text{distance}}{\text{speed}} = \frac{t}{c/n} = \frac{nt}{c}$$

906 (a)

For total internal reflection at AC face

$$\sin i \ge \frac{\mu_w}{u_g}$$

$$\sin \theta > \frac{4}{u_g}$$

$$\sin \theta \ge \frac{4}{3 \times 1.5}$$

$$\sin \theta \ge \frac{8}{9}$$

Suppose water is poured up to the height h, So $h\left(1-\frac{1}{\mu}\right)=1 \Rightarrow h=4 \ cm$

In each case two plane-convex lens are placed close to each other, and $\frac{1}{F} = \frac{1}{f_0} + \frac{1}{f_0}$

Ray from setting sun will be refracted at angle equal to critical angle

912 (b)

913 (b)

For TIR at PQ; $\theta > C$

From geometry of figure $\theta = 60^{\circ}$, i. e., $60^{\circ} < C$

$$\begin{split} &\Rightarrow \frac{\sqrt{3}}{2} > \frac{\mu_{Liquid}}{\mu_{\text{Pr}\,ism}} \Rightarrow \mu_{Liquid} < \frac{\sqrt{3}}{2} \times \mu_{\text{Pr}\,ism} \\ &\Rightarrow \mu_{Liquid} < \frac{\sqrt{3}}{2} \times 1.5 \Rightarrow \mu_{Liquid} < 1.3 \end{split}$$

915 (c)

From law of reflection, $\angle i = \angle r$... (i)

And
$$\frac{\sin r'}{\sin i} = \frac{\mu_d}{\mu_r}$$
 ... (ii)

From the figure,

$$r + r' + 90^\circ = 180^\circ$$

$$\Rightarrow r + r' = 90^{\circ}$$

Or
$$i + r' = 90^{\circ}$$

$$r' = (90^{\circ} - i)$$
 ... (iii)

From Eq. (ii),
$$\frac{\sin(90^{\circ} - i)}{\sin i} = \frac{\mu_d}{\mu_r}$$

$$\operatorname{Or} \frac{\cos i}{\sin i} = \frac{\mu_d}{\mu_r} \Rightarrow \cot i = \frac{\mu_d}{\mu_r}$$

But $\frac{\mu_d}{\mu} = \sin C$ (where C is critical angle)

$$\therefore \cot i = \sin C \Rightarrow C = \sin^{-1} (\cot i)$$

916 (a)

When final image is formed at ∞ ,

$$M = \frac{v_0}{u_0} \left(\frac{D}{f_e} \right) = \frac{v_o}{f_o} \left(\frac{D}{f_e} \right)$$

Now, $v_0 = 16 - f_e = 16 - 2.5 = 13.5$ cm

$$M = \frac{13.5}{-0.4} \times \frac{25}{2.5} = -337.5$$

917 (d)

$$\frac{f_l}{f_a} = \frac{(a\mu_g - 1)}{(l\mu_g - 1)}$$

$$\Rightarrow \frac{f_w}{f_a} = \frac{(1.5 - 1)}{\left(\frac{1.5}{1.32} - 1\right)} \Rightarrow f_w = 32 \text{ cm}$$

$$I = \frac{L}{r^2} \Rightarrow \frac{L_1}{r_1^2} = \frac{L_2}{r_2^2}$$

or
$$\frac{8}{x^2} = \frac{32}{(120-x)^2}$$

Solving it we get x = 40 cm

920 (b)

$$P_1 + P_2 = 9$$

$$P = P_1 + P_2 - dP_1 P_2$$

$$\frac{27}{9} = 9 - \frac{20}{100} \times P_1 P_2$$

The above equation is correct for $P_1 = 3$ and $P_2 =$

921 (c)

When light waves are incident on the interface between air and glass, then for the first ray there is no phase change on reflection from such an interface. The second ray is reflected at an interface between an optically less dense medium (air) through which the ray travels and a dense medium (glass). There is a 180° phase change on reflection from such an interface.

922 (d)

In general, the simple microscope is used with image at D, hence

$$m = 1 + \frac{D}{f} = 1 + \frac{25}{5} = 6$$

923 (d)

$$\phi = \frac{3}{1.5 \times 10^{-3}} \times 0.685 = 1.37 \times 10^{3} lumen$$

$$\frac{I_{\text{centre}}}{I_{\text{edge}}} = \frac{(r^2 + h^2)^{3/2}}{h^3} = \frac{\left(1 + \frac{1}{4}\right)^{3/2}}{1^3} = \left(\frac{5}{4}\right)^{3/2}$$

925 (b)

$$\alpha = \frac{3.5 \times 10^3}{3.8 \times 10^5} \text{rad} = \frac{3.5}{3.8 \times 100} \times \frac{180^\circ}{\pi}$$
$$= \frac{3.5 \times 180 \times 7^\circ}{38 \times 100 \times 22}$$

Also,
$$M = \frac{f_0}{f_e} = \frac{400}{10} = 40$$

Also,
$$M = \frac{f_o}{f_e} = \frac{400}{10} = 40$$

$$\beta = \frac{40 \times 35 \times 180 \times 7^\circ}{35 \times 100 \times 22} = 21.1^\circ \approx 21^\circ$$

926 (b)

Form $\triangle abc$, $A + 90^{\circ} + (90^{\circ} - i) = 180^{\circ}$ Or i = A

Now, complementary angle at point d, $\theta = 2i$ $\therefore \theta = 2A$

Only option (b) satisfies this

927 (d)

$$\frac{1}{f_1} = (1.6 - 1) \left(\frac{1}{\infty} - \frac{1}{20} \right) = -\frac{0.6}{20} = -\frac{3}{100} \dots (i)$$

$$\frac{1}{f_2} = (1.5 - 1) \left(\frac{1}{20} - \frac{1}{-20} \right) = \frac{1}{20} \dots (ii)$$

$$\frac{f_2}{f_3} = (1.6 - 1)\left(\frac{1}{-20} - \frac{1}{\infty}\right) = -\frac{3}{100}$$
 ... (iii)

$$\Rightarrow \frac{1}{F} = -\frac{3}{100} + \frac{1}{20} - \frac{3}{100} \Rightarrow F = -100 \text{ cm}$$

928 (d)

Length of the telescope when final image is formed at least distance of distinct vision is

$$L = f_o + u_e = f_o + \frac{f_e D}{f_e + D} = 50 + \frac{5 \times 25}{5 + 25}$$
$$= \frac{325}{6} cm$$

929 (d)

930 (d)

Convex mirror always forms, virtual, erect and smaller image

931 (b)

In any medium other than air or vacuum, the velocities of different colours are different.

Therefore, both red and green colours are refracted at different angles of refraction. Hence, after emerging from glass slab through opposite parallel face, they appear at two different points and move in the two different parallel directions.

932 (a)

Colour of light is determined by its frequency and as frequency does not change, colour will also not change and will remain green

933 (a)

Virtual image formed is larger in size in case of concave mirror

934 (c)

The variation of relative luminosity with wavelength is shown here

935 (a)

For surface $AC = \frac{1}{\mu} = \frac{\sin 30^{\circ}}{\sin e} \Rightarrow \sin e = \mu \sin 30^{\circ}$

$$\Rightarrow \sin e = 1.5 \times \frac{1}{2} = 0.75$$

$$\Rightarrow e = \sin^{-1}(0.75) = 48^{\circ}36'$$

From figure $\delta = e - 30^{\circ}$

 $=48^{\circ}36'-30^{\circ}=18^{\circ}36'$

936 (b)

When an object is placed in front of convex mirror, then for all positions of object, convex mirror forms erect and diminished image of that object. So, it is obvious that man seeing his image shorter than his height uses convex mirror.

937 (b)

Clearly, the given mirror is a convex mirror

$$m = \frac{f}{f - u}$$

$$\frac{1}{3} = \frac{18}{18 - u}$$
Or $3 \times 18 = 18 - u$
Or $u = -2 \times 18$ cm or $u = -36$ cm

938 (c)

$$\begin{split} \delta_{\text{Pr}\,ism} &= (\mu - 1)A = (1.5 - 1)4^{\circ} = 2^{\circ} \\ &: \delta_{Total} = \delta_{\text{Pr}\,ism} + \delta_{Mirror} \\ &= (\mu - 1)A + (180 - 20) = 2^{\circ} + (180 - 2 \times 2) \\ &= 178^{\circ} \end{split}$$

939 (c)

$$P = \frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

Hence,
$$\frac{P_2}{P_1} = \left(\frac{\mu_2 - 1}{\mu_1 - 1}\right)$$

ie,
$$\frac{P_2}{1} = \frac{1.6 - 1}{1.5 - 1}$$

Hence,
$$P_2 = 1.2$$

940 (c)

i.e., order will be 5 mm

941 (d)

The two lenses of an achromatic doublet should have, sum of the product of their powers and dispersive power equal to zero

942 (a)

$$\frac{R}{t} \tan \theta_C$$

Or
$$R = t(\tan \theta_C)$$

But,
$$\sin \theta_C = \frac{1}{\mu} = \frac{3}{5}$$

$$\therefore \tan \theta_C = \frac{3}{4}$$

$$R = \frac{3}{4}t = \frac{3}{4}(8 \text{ cm}) = 6 \text{ cm}$$

Hence, the answer is 6.

943 (b)

$$\mu = \frac{\sin\left(\frac{A + \delta_m}{2}\right)}{\sin\frac{A}{2}} \Rightarrow \sqrt{3} = \frac{\sin\left(\frac{60^\circ + \delta_m}{2}\right)}{\sin\frac{60^\circ}{2}}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \sin\left(30^\circ + \frac{\delta_m}{2}\right) \Rightarrow \delta_m = 60^\circ$$

$$n_1 = \frac{c}{v_1} = \frac{v\lambda}{v\lambda_1} = \frac{\lambda}{\lambda_1}$$

$$n_2 = \frac{c}{v_2} = \frac{v\lambda}{v\lambda_2} = \frac{\lambda}{\lambda_2}$$

$$\text{Now, } \frac{n_1}{n_2} = \frac{\lambda_2}{\lambda_1}$$

$$\text{Or } \lambda_2 = \left(\frac{n_1}{n_2}\right)\lambda_1$$

947 (c)

$$\sqrt{3} = \frac{\sin\left(\frac{60^{\circ} - \delta_m}{2}\right)}{\sin\left(\frac{60^{\circ}}{2}\right)}$$

$$\frac{\sqrt{3}}{2} = \sin\left(\frac{60^{\circ} + \delta_m}{2}\right)$$

$$\sin 60^{\circ} = \sin\left(\frac{60^{\circ} + \delta_m}{2}\right)$$

$$\operatorname{Or} \frac{60^{\circ} + \delta_m}{2} = 60^{\circ}$$

$$\operatorname{Or} \delta_m = 60^{\circ}; i = \frac{A + \delta_m}{2} = \frac{60^{\circ} + 60^{\circ}}{2} = 60^{\circ}$$

948 (a)

$$P = P_1 + P_2 = 2D - 4D = -2D$$

949 (d)

950 (a)

From the figure it is clear that the angle between incident ray and emergent ray is 90°

951 (c)

The focal length
$$\frac{1}{f_1} = (\mu - 1) \frac{1}{-R}$$

$$\frac{1}{f_1} = (1.5 - 1) \frac{1}{-25}$$

$$\frac{1}{f_1} = -50 \text{ cm}$$
The focal length
$$\frac{1}{f_1} = (1.5 - 1) \times \frac{1}{f_1}$$

$$\frac{1}{f_2} = (1.5 - 1) \times \frac{1}{-20}$$

$$\frac{1}{f_2} = 0.5 \times \frac{1}{f_2} \text{ m}$$

$$\frac{1}{f_2} = 0.5 \times \frac{1}{-20} \text{ m}$$

$$\frac{1}{f_2} = -40 \text{ cm}$$

The focal length of bi-convex

$$\frac{1}{f_3} = \binom{1}{1}n_2 - 1\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$\frac{1}{f_3} = \left(\frac{4}{3} - 1\right)\left(\frac{1}{20} + \frac{1}{25}\right)$$

$$\frac{1}{f_3} = \frac{1}{3} \times \left(\frac{5 + 4}{100}\right)$$

$$\frac{1}{f_3} = \frac{1}{3} \times \frac{9}{100}$$

$$\frac{1}{f_3} = \frac{3}{100}$$

$$\frac{1}{f_3} = \frac{-200}{3}$$

$$F = -66.3 \text{ cm}$$

952 (b)

Absolute refractive index is defined as the ratio of speed of light in free space to that in a given medium

$$ie, \mu = \frac{c}{v}$$

For a given light, denser is the medium, lesser will be the speed of light and so greater will be the refractive index, eg, as $v_{\rm glass}>v_{\rm water}, \mu_{\rm g}<\mu_{\rm w}.$ As speed of light in vacuum is always greater than speed in a transparent medium, so the refractive index in a transparent medium is greater than one.

953 (a)

Ratio of focal length of new plano convex lenses is 1:1

954 (c)

Since the image is formed at the point of object *i. e.*, object is kept on the radius of curvature \therefore C. F. = F. P. = 60 cm = f

955 (d)

While vibrating, the resultant polarized light in a plane makes an angle θ with reflecting surfaces.

Taking triangle *OAB*, we have $\theta + 57^{\circ} = 90^{\circ}$ $\Rightarrow \theta = 90^{\circ} - 57^{\circ} = 33^{\circ}$

957 (c)

According to lens maker's formula The focal length of plano convex lens is

$$\frac{1}{f} = (n-1)\left(\frac{1}{\infty} - \frac{1}{-R}\right)$$

$$\frac{1}{f} = \left(\frac{3}{2} - 1\right)\left(\frac{1}{R}\right) = \frac{1}{2R}$$
or $R = \frac{f}{2}$...(i

The focal length of liquid lens is

$$\frac{1}{f_1} = (n_l - 1) \left(\frac{1}{-R} - \frac{1}{\infty} \right)$$

$$\frac{1}{f_1} = \frac{(n_l - 1)}{R}$$

$$\frac{1}{f_1} = \frac{2(n_l - 1)}{f}$$
 [Using (i)]

Effective focal length of the combination is

$$\frac{1}{2f} = \frac{1}{f} + \frac{1}{f_1}$$

$$\frac{1}{2f} = \frac{1}{f} - \frac{2(n_l - 1)}{f} \Rightarrow 2(n_l - 1) = 1 - \frac{1}{2} = \frac{1}{2}$$

$$\Rightarrow n_l - 1 = \frac{1}{4} \Rightarrow n_l = \frac{5}{4} = 1.25$$

958 (a) $\mu = \frac{1}{\sin C} = \frac{1}{\sin 60^{\circ}} = \frac{2}{\sqrt{2}}$

(d)

$$u = -10 \text{ cm}, v = 20 \text{ cm}$$

 $\frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{20} - \left(-\frac{1}{10}\right) = \frac{3}{20} \Rightarrow f = \frac{20}{3} \text{ cm}$
Now $P = \frac{100}{f} = \frac{100}{20/3} = +15 D$

961 (a)

$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin(A/2)} = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = \sqrt{2}$$

962 **(d)**

Given,
$$f_{aa} = 0.15$$
 m, $\mu_g = \frac{3}{2}$ and $\mu_{w_w} = \frac{4}{3}$
According to Lens maker's formula
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \text{ where } \mu = \frac{\mu_L}{\mu_M}$$

$$\frac{1}{f_{aa}} = \left(\frac{\mu_g}{\mu_{aa}} - 1 \right) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$= \left(\frac{(3/2)}{1} - 1\right)C \text{ where } C = \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Or
$$\frac{1}{f_{aa}} = \frac{C}{2}$$
 ... (i)

Also,
$$\frac{1}{f_{w_{w}}} = \left(\frac{\mu_{g}}{\mu_{w}} - 1\right) \left(\frac{1}{R_{1}} - \frac{1}{R_{2}}\right)$$

$$= \left(\frac{(3/2)}{(4/3)} - 1\right)C$$

Or
$$\frac{1}{f_{w_w}} = \frac{C}{8}$$
 (ii)

From Eqs. (i) and (ii), we get

$$\frac{f_{w_{xy}}}{f_{aa}} = \frac{C}{2} \times \frac{8}{C} = 4$$

Or
$$f_{xw} = 4f_{aa} = 4 \times 0.15 = 0.6 \text{ m}$$

963 (b)

For total internal reflection from surface BC $\theta \ge C \Rightarrow \sin \theta \ge \sin C$

$$\Rightarrow \sin \theta \ge \left(\frac{1}{\iota \mu_g}\right)$$

$$\Rightarrow \sin \theta \ge \left(\frac{\mu_{\text{Liquid}}}{\mu_{\text{Prism}}}\right)$$

$$\sin\theta \ge \left(\frac{1.32}{1.56}\right) \Rightarrow \sin\theta \ge \frac{11}{13}$$

964 (a)

When light ray goes from denser to rarer medium (i. e., more μ to less μ) it deviates away from the normal while if light ray goes from rarer to denser medium (i. e. less μ more μ) it bend towards the

This property is satisfied by the ray diagram (i) only

965 (a)

$$\frac{\sin 90^{\circ}}{\sin C} = \mu$$

$$\sin C = \frac{1}{\mu} \Rightarrow \frac{R}{\sqrt{R^2 + h^2}} = \frac{3}{4}$$

Squaring, $16R^2 = 9R^2 + 9h^2$

$$7R^2 = 9h^2 \Rightarrow R = \frac{3}{\sqrt{7}}h$$

966 (d)

$$f = \frac{R}{2(\mu - 1)} \Rightarrow 10 = \frac{R}{2(1.6 - 1)} \Rightarrow R = 12 \text{ cm}$$

967 (a)

A concave lens always from virtual image for real

968 (a)

Power of the combination $P = P_1 + P_2 = 12 - 12$

: Focal length of the combination

$$F = \frac{100}{P} = \frac{100}{10} = 10 \ cm$$

969 (d)

For achromatic combination $\omega_C = -\omega_F$

$$[(\mu_{\nu} - \mu_{r})A]_{C} = -[(\mu_{\nu} - \mu_{r})A]_{F}$$

$$\Rightarrow [\mu_{r}A]_{C} + [\mu_{r}A]_{F} = [\mu_{\nu}A]_{C} + [\mu_{c}A]_{F}$$

$$= 1.5 \times 19 + 6 \times 1.66 = 38.5$$

Resultant
$$\delta = [(\mu_r - 1)A]_C + [(\mu_r - 1)A]_F$$

= $[\mu_r A]_C + [\mu_r A]_F - (A_C + A_F)$

$$= 38.5 - (19 + 6) = 13.5^{\circ}$$

970 (c)

Here, $i = 45^{\circ}$

Applying Snell's law at air-glass surface, we get

$$\mu_a \sin i = \mu_g \sin r''$$

$$1\sin i = \sqrt{2}\sin r''$$

$$\sin r'' = \frac{1}{\sqrt{2}} \sin i$$

$$=\frac{1}{\sqrt{2}}\sin 45^{\circ}$$

$$\sin r'' = \frac{1}{2}$$

$$r^{\prime\prime} = \sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ}$$

From figure, $r + \theta + r'' = 180^{\circ}$

$$i + \theta + 30^{\circ} = 180^{\circ}$$
 [: $i = r$]

$$i + \theta + 30^{\circ} = 180^{\circ} \Rightarrow \theta = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

Hence, the angle between reflected and refracted rays is 105°

972 (b)

Size is $\frac{1}{\epsilon}$. It can't be plane and concave mirror, because both conditions are not satisfied in plane

or concave mirror. Convex mirror can meet all the requirements

973 (a)

From the following figure

$$r + i = 90^{\circ} \Rightarrow i = 90^{\circ} - r$$

For ray not to emerge from curved surface i > C $\Rightarrow \sin i > \sin C \Rightarrow \sin(90^{\circ} - r) > \sin C \Rightarrow \cos r$

$$\Rightarrow \sqrt{1 - \sin^2 r} > \frac{1}{n} \qquad \left[\because \sin C = \frac{1}{n} \right]$$

$$\Rightarrow 1 - \frac{\sin^2 \alpha}{n^2} > \frac{1}{n^2} \Rightarrow 1 > \frac{1}{n^2} (1 + \sin^2 \alpha)$$

$$\Rightarrow n^2 > 1 + \sin^2 \alpha \Rightarrow n > \sqrt{2} \quad [\sin i \to 1]$$

$$\Rightarrow \text{Least value} = \sqrt{2}$$

975 (b)

In \(\Delta BCE

$$\sin(\theta - r) = \frac{CE}{BC}$$

$$CE = BC\sin(\theta - r)$$

or
$$d = BC \sin(\theta - r)$$
 ... (i)

In $\triangle BMC$

$$\cos r = \frac{BM}{BC}$$
or $BC = \frac{BM}{\cos r} = \frac{t}{\cos r}$... (ii)

From Eqs (i) and (iii) we get

$$d = \frac{t}{\cos r} \sin(\theta - r)$$

$$d = \frac{t}{\cos r} (\sin \theta \cos r - \cos \theta \sin r)$$

 $d = t(\sin\theta - \cos\theta\tan r)$

If *n* is the refractive index of material of slab (glass) w.r.t. air, then

$$n = \frac{\sin \theta}{\sin r}$$

For small angle

$$n = \frac{\theta}{r}$$
$$r = \frac{\theta}{n}$$

And $d = t(\theta - 1.r)[\because \sin \theta = \theta \cos \theta = 1 \text{ if } \theta \text{ is small}]$

$$d = t\left(\theta - \frac{\theta}{n}\right) = t\theta\left(1 - \frac{1}{n}\right)$$
$$\therefore d = \frac{t\theta(n-1)}{n}$$

976 (a)

In minimum deviation condition $r = \frac{A}{2} = \frac{60}{2} = 30^{\circ}$

977 (a)

$$\mu = \frac{\sin\left(\frac{A+\delta_m}{2}\right)}{\sin\frac{A}{2}} = \frac{\sin\left(\frac{60^{\circ}+60^{\circ}}{2}\right)}{\sin\left(\frac{60^{\circ}}{2}\right)} = \sqrt{3}$$

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$u = 10, v = 15, f = ?$$

$$\frac{1}{15} - \frac{1}{10} = \frac{1}{f}$$
$$\Rightarrow f = -30 \text{ cm}$$

980 (a)

When plane mirror rotates through an angle θ , the reflected ray rotates through an angle 2θ . So spot on the screen will make 2n revolutions per second

981 (d)

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} \Rightarrow \frac{1}{80} = \frac{1}{20} + \frac{1}{f_2} \Rightarrow f_2 = -\frac{80}{3} cm$$

. Power of second lens

$$P_2 = \frac{100}{f_2} = \frac{100}{-80/3} = -3.75 D$$

982 (d)

According to Kirchhoff's law, a substance in unexcited state will absorb these wavelength which it emits in de-excitation

983 (d)

The image formation by a convex lens is as follows

Image formed is diminished, when objects lies between 2*F* and infinity.

Magnification

$$(M) = \frac{image\ size}{object\ size}$$

$$=\frac{1}{2}=\frac{v}{u}\quad \dots (i)$$

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \dots (ii)$$

Where, f is focal length, v the image distance and u the object distance.

From eqs. (i) and (ii), we get

$$\frac{1}{f} = \frac{1}{u} + \frac{2}{u}$$

As u = 90 cm

$$\frac{1}{30} = \frac{3}{u}$$

$$\Rightarrow u = 90 cm$$

984 (a)

$$|m| = \frac{f_o}{f_e} = 20$$
 and $L = f_o + f_e = 105 \Rightarrow f_o = 100$

985 (c)

As is clear from figure, the new distance is 2x -2v. The distance of image from object is reduced by an amount 2v is one second

986 (b)

Actual position of

(Just below horizon)

$$f = \frac{R}{2}$$

988 (c)

The parallel rays coverage at a distance equal to focal length of lens so f = L

but
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

= $(1.5 - 1) \left(\frac{1}{20} + \frac{1}{20} \right)$
= $\frac{0.5 \times 2}{20} = \frac{1}{20}$

So f = 20 cm therefore, L = 20 cm

989 (c)

$$\frac{\sin r}{\sin i} = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

Or
$$\frac{\sin i}{\sin r} = \sqrt{3}$$
 or $\mu = \sqrt{3}$

So, speed of light in *Y* is $\sqrt{3}$ times less

990 (c)

 μ_g and μ_g are refractive indices for rarer (water) and denser (glass) media, then

$$\frac{\sin C}{\sin 90^{\circ}} = \frac{\mu_{w_{w}}}{\mu_{g}}$$

$$\Rightarrow \sin C = \frac{4/3}{3/2} = \frac{8}{9}$$

$$\Rightarrow C = \sin^{-1}\left(\frac{8}{9}\right)$$

991 (a)

Since prism *P* is placed in position of minimum deviation, therefore refracted rays becomes parallel to the base of the prism, again by adding two prism R and Q of same material as shown in figure, the deviation produced by Q and R equal and opposite in sense, therefore final deviation is same as due to prism P.

992 (c)

Angle of incidence = 2(Angle of refraction), i =2r [Given]

As
$$\mu = \frac{\sin t}{\sin r} = \frac{\sin 2r}{\sin r}$$

$$= \frac{2 \sin r \cos r}{\sin r} \quad [\because \sin 2\theta = 2 \sin \theta \cos \theta]$$

$$= 2 \cos r$$
or $\cos r = \frac{\mu}{2}$ or $r = \cos^{-1}(\frac{\mu}{2})$

or
$$\cos r = \frac{\mu}{2}$$
 or $r = \cos^{-1}\left(\frac{\mu}{2}\right)$

$$\therefore i = 2r = 2\cos^{-1}\left(\frac{\mu}{2}\right)$$

993 (c)

Given,
$$n = 1.5$$
, $h_0 = 3$
 $n = \frac{h_0}{h_1}$

$$1.5 = \frac{3}{h_1}$$

$$h_1 = \frac{3}{h_2} = 2 \text{ cm}$$

$$h_i = \frac{3}{1.5} = 2 cm$$

Hence, 3-2 = 1 cm upwards.

995 (a)

From figure

$$\theta + \theta + 10 = 90$$

$$\Rightarrow \theta = 40^{\circ}$$
Vertical RR
$$\theta = \frac{10^{\circ}}{10^{\circ}}$$
Horizontal line
Plane

996 (b)

In short sightedness, the focal length of eye lens decreases, so image is formed before retina

mirro

997 (c)

When a slab of thickness t is introduced between P and the mirror, the appearent position of P shifts towards the mirror by $\left(t-\frac{t}{u}\right)$. Hence, the mirror must be moved in the same direction through the same distance

998 (a)

According to Snell's law

Refractive index,
$$\mu = \frac{\sin t}{\sin r}$$

Given
$$i = 2r$$

$$\therefore \mu = \frac{\sin 2r}{\sin r}$$

$$\text{Or } \mu = \frac{2 \sin r \cos r}{\sin r}$$

$$\text{Or } \cos^{-1} \frac{\mu}{2} = r$$

$$\operatorname{Or} \cos^{-1} \frac{\mu}{\mu} = r$$

$$\Rightarrow i = 2\cos^{-1}\left[\frac{\mu}{2}\right]$$

999 (a)

Lens formula is given by

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$
 ... (i)

Where f is focal length of lens, v is image distance and u is object distance.

Given f = 10 cm (as lens is converging)

u = -8 cm (as object is placed on left side of the

Substituting these values in Eq. (i), we get

$$\frac{1}{10} = \frac{1}{v} - \frac{1}{-8}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{10} - \frac{1}{8}$$

$$\Rightarrow \frac{1}{v} = \frac{8 - 10}{80}$$

$$v = \frac{80}{-2} = -40 \text{ cm}$$

Hence, magnification produced by the lens

$$m = \frac{v}{u} = \frac{-40}{-8} = 5$$

100 (a)

For lens, mirror combination, combined focal length is given by

$$\frac{1}{F} = \frac{2}{f} + \frac{1}{f_m}$$

Here,
$$f_m = \infty$$

$$\therefore \frac{1}{F} = \frac{2}{f}$$

Or
$$F = \frac{f}{2} = \frac{20}{2} = 10$$
cm

100 (b)

1 Deviation is greater for lower wavelengths

100 (a)

2 Solids and liquids given continuous and line spectra. Only gases are known to given band spectra

100 (c)

From figure it is clear that relative velocity between object and it's image = $2v \cos \theta$

100 (c)

Given, $a\mu_g = a\mu_e$

The focal length of convex lens in liquid *f* is given

$$\frac{1}{f} = \left(\frac{a\mu_g}{a\mu_{ee}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{f} = (1-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{f} = 0$$

Or
$$f = \infty$$

Its focal length will become infinite.

100 (b)

For achromatic combination, $\frac{\omega_1}{f_1} + \frac{\omega_2}{f_2} = 0$ 7 $\Rightarrow \omega_1 f_2 + \omega_2 f_1 = 0$

100 (a)

8 $\angle i = \angle r = 0^{\circ}$

100 (d)

After refraction through a medium, red rays deviate less. Also, since air is rarer than water, so the rays bend towards the normal. So, the correct dispersion pattern is (b).

101 **(b)**

0

Refractive index of liquid C is same as that of glass piece. So it will not be visible in liquid C

101 (a)

 $\delta \propto (\mu - 1)$ 1

101 (c)

Since $\theta < \theta_C$, both reflection and refraction will take place. From the figure we can see that angle between reflected and refracted rays α is less than $180^{\circ} - 2\theta$.

101 (d)

For total internal reflection

For total internal refle

$$\mu = \frac{1}{\sin C}$$

$$\mu = \frac{1}{\sin(90^\circ - \theta)}$$

$$\mu = \frac{1}{\cos \theta} \Rightarrow \cos \theta = \frac{1}{\mu}$$

$$\theta = \cos^{-1}\left(\frac{1}{\mu}\right)$$

101 (b)

$$\Rightarrow \frac{1}{v} = \frac{2-1}{40}$$

$$\Rightarrow v = 40 \text{ cm}$$

101 (b)

When light passes from one medium to another, its frequency remains unchanged but it velocity (and hence, wavelength) changes.

$$a\mu_{g} = \frac{\text{wavelength in air } (\lambda_{a})}{\text{wavelength in glass } (\lambda_{g})}$$

$$\Rightarrow 1.6 = \frac{5890}{\lambda_{g}}$$

$$\Rightarrow \lambda_{g} = \frac{5890}{1.6} = 3681 \text{ Å}$$

101 (d)

After silvering the plane surface, plano convex lens behave as a concave mirror of focal length

$$\frac{1}{F} = \frac{2}{f_{lens}}$$
but $F = 0.2 m$

$$f_{lens} = 2F = 2 \times 0.2 = 0.4 m$$
Now, from lens maker's formula
$$\frac{1}{f_{lens}} = (\mu - 1)(\frac{1}{R_1} - \frac{1}{R_2})$$

$$\frac{1}{0.4} = (1.5 - 1)(\frac{1}{R_1} - \frac{1}{\infty})$$

$$\Rightarrow R_1 = 0.5 \times 0.4 = 0.2 m$$

101 (d)

Angle of incidence = angle of emergence

Ie,
$$i = i'$$

Also, $i = \frac{3}{4} \times \text{angle of equilateral prism} = \frac{3}{4} \times$

$$60^{\circ} = 45^{\circ}$$

Thus, angle of deviation

=
$$i + i - A$$

= $(45^{\circ} + 45^{\circ} - 60^{\circ}) = 30^{\circ}$

102 (c)

Let distance between lenses be x. As per the given condition, combination behaves as a plane glass plate, having focal length ∞

So by using
$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{x}{f_1 f_2}$$

$$\Rightarrow \frac{1}{\infty} = \frac{1}{+30} + \frac{1}{-10} - \frac{x}{(+30)(-10)} \Rightarrow x = 20 \text{ cm}$$

Only the light-gathering power is reduced

Covering a portion of lens does not effect position and size of image

102 (a)

3

Magnification of objective lens $m = \frac{I}{O} = \frac{v_0}{u_0} = \frac{f_0}{u_0}$ $\Rightarrow \frac{I}{50} = \frac{200 \times 10^{-2}}{2 \times 10^{3}} \Rightarrow I = 5 \times 10^{-2} m = 5 \text{ cm}$

Apparent distance of fish from lens $u = 0.2 + \frac{h}{u}$

$$=0.2+\frac{0.4}{4/3}=0.5m$$

From
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow \frac{1}{(+3)} = \frac{1}{v} - \frac{1}{(-0.5)}v = -0.6 m$$

The image of the fish is still where the fish is 0.4 m below the water surface

102 (b)

The point on the right side of the lens at will rays converge will behave as virtual object of the lens.

$$\therefore u = +12 \, cm, f = 20 \, cm$$

From the relation

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\therefore \ \frac{1}{20} = \frac{1}{v} - \frac{1}{12}$$

$$\Rightarrow \frac{1}{v} = \frac{1}{20} + \frac{1}{12}$$
$$= \frac{3+5}{60} = \frac{8}{60}$$

$$=\frac{3+5}{60}=\frac{8}{60}$$

$$\therefore u = \frac{60}{8} = 7.5 cm$$

So, image will be formed on same side of the virtual object at a distance of 7.5 cm from the lens.

102 (a)

Let *A* be the angle of prism, and δ the angle of minimum deviation, then refractive index of the medium of prism is given by

$$\mu = \frac{\sin\left(\frac{A+\delta}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

Given, $\delta = A, \mu = 1.5$

$$\therefore 1.5 = \frac{\sin\left(\frac{A+A}{2}\right)}{\sin\left(\frac{A}{2}\right)}$$

$$\therefore 1.5 = \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{\sin\frac{A}{2}}$$

$$\Rightarrow \cos\frac{A}{2} = \frac{1.5}{2} = 0.75$$

$$\Rightarrow \frac{A}{2} = 41^{\circ} - 24' - 36''$$

$$\Rightarrow \tilde{A} = 82^{\circ} - 48' - 72''$$

102 (d)

Hypermetropia is removed by convex lens

102 (b)

Velocity of light is maximum in vacuum

103 (a)

Let distance = u. Now $\frac{v}{v} = 16$ and v = u + 120 $\therefore \frac{120+u}{u} = 16 \Rightarrow 15u = 120 \Rightarrow u = 8 cm$

$$\mu = A + \frac{B}{A^2}$$

103 (c)

Objective of compound microscope is a convex lens. Convex lens forms real and enlarged image when an object is placed between its focus and

103 (d)

The illuminance at B

$$I_B = \frac{L}{1^2} \qquad \dots (i)$$

And illuminance at point C

$$I_C = \frac{L\cos\theta}{\left(\sqrt{5}\right)^2} = \frac{L}{\left(\sqrt{5}\right)^2} \times \frac{1}{\sqrt{5}}$$

$$\Rightarrow I_C = \frac{L}{5\sqrt{5}} \qquad ... \text{(iii)}$$

From equation (i) and (ii) $I_B = 5\sqrt{5} I_0$

$$\frac{1}{50^2} = \frac{16}{d^2}$$

Or
$$d^2 = (50)^2 \times 16$$

Or
$$d = 50 \times 4$$
cm = 200cm = 2m

103 (b)

$$6 m = \frac{f}{f - u} \Rightarrow -3 = \frac{f}{f - (-20)} \Rightarrow f = -15 \text{ cm}$$

$$7 \qquad m = \frac{f}{f - u}$$

$$-2 = \frac{-20}{-20 - u}$$

$$-2 = \frac{20}{20 + u}$$

Or u = -30 cm

103 (a)

8 In myopia, eye ball may be elongated so, light rays focussed before the retina

103 (a)

9

$$m = \frac{f}{f+u} = -2 = \frac{\frac{1}{3}}{\frac{1}{3}+u}$$
$$-\frac{2}{3} - 2u = \frac{1}{3}$$

Or
$$-2u = \frac{1}{3} + \frac{2}{3} = 1$$

Or
$$u = -\frac{1}{2}m = -0.5 \text{ m}$$

104 (c)

0 From colour triangle

104 (a)

1 Light ray is going from liquid (Denser) to air (Rarer) and angle of refraction is 90°, so angle of incidence must be equal to critical angle

From figure

$$\sin C = \frac{4}{5}$$

Also
$$\mu = \frac{1}{\sin C} = \frac{5}{4} = 1.2$$

104 (b)

2 Case (i) When flat face is in contact with paper

 $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ where

 $\mu_1 = R.I.$ of medium in which light rays are going = 1

 $\mu_1 = R.I.$ of medium from which light rays are coming = 1.6

u =distance of object from curved surface = -0.04 m

R = -0.04 m

$$\therefore \frac{1}{v} - \frac{1.6}{(-0.04)} = \frac{1 - 1.6}{(-0.04)} \Rightarrow v = -0.04 \ m$$

i. e., the image will be formed at the same position of cross

Case (ii) When curved face is in contact with paper

$$\mu = \frac{\text{Real depth } (h)}{\text{Apparent depth } (h')}$$

$$\Rightarrow 1.6 = \frac{0.04}{h'}$$

$$\Rightarrow h' = 0.025 \text{ } m$$

104 (a)

Dividing Eq.(i) by Eq.(ii), we get

$$-5 = \frac{0.5n}{1.5 - n}$$

$$0r -7.5 + 5n = 0.5n \text{ or} -7.5 = -4.5n$$

Or
$$n = \frac{75}{45} = \frac{5}{3}$$

104 (c)

4
$$\mu \propto \frac{1}{v} \Rightarrow \frac{\mu_l}{\mu_g} = \frac{v_g}{v_l} \Rightarrow \frac{\mu_l}{1.5} = \frac{2 \times 10^8}{2.5 \times 10^8} \Rightarrow \mu_l = 1.2$$

104 **(b**)

6
$$I \propto \frac{1}{r^2}$$
 so,

Illuminance on slide

Illuminance on screen

$$= \frac{(\text{Length of image on screen})^2}{(\text{Length of object on slide})^2}$$

$$= \left(\frac{3.5 \ m}{35 \ mm}\right)^2 = 10^4 : 1$$

104 (d)

$$\sin C = \frac{\sqrt{3}}{2} \qquad \dots (i)$$

$$\sin r = \sin(90^{\circ} - C) = \cos C = \frac{1}{2}$$

$$\sin \theta \quad \mu_2$$

$$\frac{\sin \theta}{\sin r} = \frac{\mu_2}{\mu_1}$$

$$\sin\theta = \frac{2}{\sqrt{3}} \times \frac{1}{2}$$

$$\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

104 **(b)**

8 Far point of the eye = focal length of the lens $= \frac{100}{P} = \frac{100}{0.66} = 151 \text{ cm}$

104 (a)

9 Apparent depth is given by

$$d_{\text{apparent}} = \frac{d_1}{\mu_1} + \frac{d_2}{\mu_2}$$
$$= \frac{6}{4/3} + \frac{6}{1.5} = 4.5 + 4$$
$$= 8.5 \text{ cm}$$

105 (a)

0 The central ray goes undeviated. So, $\mu_2=\mu_1$ Also, $\mu_3<\mu_2$

105 **(b)**

The far and near point for normal eye are usually taken to be infinite and 25 cm respectively, ie, a normal eye can see very distant objects clearly but near objects only if they are at a distance greater than 25 cm from the eye. The ability of eye to see objects from infinite distance to 25 cm from it is called power of accommodation.

RAY OPTICS AND OPTICAL INSTRUMENTS

Assertion - Reasoning Type

This section contain(s) 0 questions numbered 1 to 0. Each question contains STATEMENT 1(Assertion) and STATEMENT 2(Reason). Each question has the 4 choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- a) Statement 1 is True, Statement 2 is True; Statement 2 is correct explanation for Statement 1
- b) Statement 1 is True, Statement 2 is True; Statement 2 is not correct explanation for Statement 1
- c) Statement 1 is True, Statement 2 is False
- d) Statement 1 is False, Statement 2 is True

1

- **Statement 1:** The focal length of the mirror is f and distance of the object from the focus is u, the
 - magnification of the mirror is f/u
- **Statement 2:** Magnification = $\frac{\text{Size of image}}{\text{Size of object}}$

2

- Statement 1: The illuminance of an image produced by a convex lens is greater in the middle and lens
 - towards the edges
- **Statement 2:** The middle part of image is formed by undeflected rays while outer part by inclined rays

3

- **Statement 1:** A red object appears dark in the yellow light
- Statement 2: A red colour is scattered less

4

- **Statement 1:** The focal length of the refractive of the telescope is larger than that of eye piece
- Statement 2: The resolving power of telescope increases when the aperture of objective is small

5

- **Statement 1:** The focal length of lens does not change when red light is replaced by blue light
- Statement 2: The focal length of lens does not depends on colour of light used

6

Statement 1: Within a glass slab, a double convex air bubble is formed. This air bubble behaves like a converging lens

	Statement 2:	Refractive index of air is more than the refractive index of glass
7		
	Statement 1:	The cloud in sky generally appear to be whitish
	Statement 2:	Diffraction due to cloud is efficient in equal measure at all wavelengths
8		
	Statement 1:	The reflective index of diamond is $\sqrt{6}$ and that liquid is $\sqrt{3}$. If the light travels from diamond to the liquid, it will initially reflected when the angle of incidence is 30°
	Statement 2:	$\mu = \frac{1}{\sin C}$ where μ is the refrective index of diamond with respect to liquid
9		
	Statement 1:	The polar caps of earth are cold in comparison to equatorial plane
	Statement 2:	The radiation absorbed by polar caps is less than the radiation absorbed by equatorial plane
10		
	Statement 1:	For the sensitivity of a camera, its aperture should be reduced
	Statement 2:	Smaller the aperture , image focusing is also sharp
11		
	Statement 1:	In optical fibre, the diameter of the core is kept small
112	Statement 2:	This smaller diameter of the core ensures that the fibre should have incident angle more than the critical angle required for total internal reflection
12		
	Statement 1:	The resolving power of a telescope is more if the diameter of the objective lens is more
	Statement 2:	Objective lens of large diameter collects more light
13		
	Statement 1:	A concave mirror and convex lens both have the same focal length in air. When they are submerged in water, they will still have the same focal length
	Statement 2:	The refractive index of water is greater than the refractive index of air
14		
	Statement 1:	The formula connecting u,v and f for a spherical mirror is valid only for mirrors whose
	Statement 2:	sizes are very small compared to their radii of curvature. Laws of reflection are strictly valid for plane surfaces, but not for large spherical surfaces.
15		and of the second secon
15	Statement 1	A short sighted person cannot see objects clearly when placed beyond 30 cm. He should
		use a concave lens of power 2 D
	Statement 2:	Concave lens should form image of an object at infinity placed at a distance of 50 cm

16 Statement 1: Diamond glitters brilliantly Statement 2: Diamond does not absorb sunlight 17 Statement 1: Glass is transparent but its powder seems opaque. When water is poured over it, it becomes transparent. **Statement 2:** Light gets refracted through water. 18 **Statement 1:** The stars twinkle while the planets do not Statement 2: The stars are much bigger in size than the planets 19 Statement 1: In a movie, ordinarily 24 frames are projected per second from one end to the other of the complete film The image formed on retina of eye is sustained upto 1/10 second after the removal of Statement 2: stimulus 20 **Statement 1:** If objective and eye lenses of a microscope are interchanged then it can work as telescope Statement 2: The objective of telescope has small focal length 21 Statement 1: The images formed by total internal reflections are much brighter than those formed by mirror or lenses Statement 2: There is no loss of intensity in total internal reflection 22 Statement 1: Just before setting, the sun may appear to be elliptical. This happens due to refraction Statement 2: Refraction of light ray through the atmosphere may cause different magnification in mutually perpendicular directions 23 Statement 1: Dispersion of light occurs because velocity of light in a material depends upon its colour Statement 2: The dispersive power depends only upon the material of the prism, not upon the refracting angle of the prism 24 **Statement 1:** The resolving power of an electron microscope is higher than that of an optical

Statement 2: The wavelength of electron is more than the wavelength of visible light

25

microscope

	Statement 1:	The refractive index of a prism depends only on the kind of glass of which it is made of and the colour of light
	Statement 2:	The refractive index of a prism depends upon the refracting angle of the prism and the angle of minimum deviation
26		
	Statement 1:	The setting sun appears to be red
	Statement 2:	Scattering of light is directly proportional to the wavelength
27		
	Statement 1:	By increasing the diameter of the objective of telescope, we can increase its range
	Statement 2:	The range of a telescope tells us how far away a star of some standard brightness can be spotted by telescope
28		spotted by telescope
	Statement 1:	Propagation of light through an optical fibre is due to total internal reflection taking place at the core-clad interface.
	Statement 2:	Refractive index of the material of the core of the optical fibre is greater than that of air.
29		
	Statement 1:	It is impossible to photograph a virtual image
	Statement 2:	The rays which appear diverging from a virtual image fall on the camera and a real image is captured
30		is captured
	Statement 1:	Angle of deviation depends on the angle of prism.
	Statement 2:	For thin prism $\delta = (\mu-1)A$ Where $\delta =$ angle of deviation $\mu =$ refractive index $A =$ angle of prism
31		
	Statement 1:	Convergent lens property of converging remain same in all mediums
	Statement 2:	Property of lens whether the ray is diverging or converging depends on the surrounding medium
32		medium
	Statement 1:	Owls can move freely during night
	Statement 2:	They have large number of rods on their retina
33		
	Statement 1:	Using Huygen's eye-piece measurements cab be taken but are not correct.
	Statement 2:	image of the object is magnified be two lenses, whereas the cross wire scale is magnified
34		by one lens only. Identify the correct one of the following

- **Statement 1:** A double convex lens ($\mu = 1.5$) has focal length 10 *cm*. When the lens is immersed in water ($\mu = 4/3$) its focal length becomes 40 *cm*
- Statement 2: $\frac{1}{f} = \frac{\mu_1 \mu_m}{\mu_m} \left(\frac{1}{R_1} \frac{1}{R_2} \right)$

35

- Statement 1: The fluorescent tube is considered better than an electric bulb
- Statement 2: Efficiency of fluorescent tube is more than the efficiency of electric bulb

36

- Statement 1: Different colours travel with different speed in vacuum
- Statement 2: Wavelength of light depends on refractive index of medium

37

- Statement 1: An empty test tube dipped into water in a beaker appears silver, when viewed from a
 - suitable direction
- **Statement 2:** Due to refraction of light, the substance in water appears silvery

38

- **Statement 1:** A short sighted person cannot see objects clearly when placed beyond 50 cm. He should
 - use a concave lens of power 2 D.
- **Statement 2:** Concave lens should form image of an object at infinity placed at a distance of 50 cm.

39

- **Statement 1:** We cannot produce a real image by plane or convex mirrors under any circumstances
- **Statement 2:** The focal length of a convex mirror is always taken as positive

40

- Statement 1: All the materials always have the same colour, whether viewed by reflected light or
 - through transmitted light
- Statement 2: The colour of material does not depend on nature of light

41

- Statement 1: By roughening the surface of a glass sheet its transparency can be reduced
- Statement 2: Glass sheet with rough surface absorbs more light

42

- Statement 1: The speed of light in a rarer medium is greater than that in a denser medium
- **Statement 2:** One light year equals to $9.5 \times 10^{12} km$

43

- Statement 1: Critical angle of light passing from glass to air is minimum for violet colour
- **Statement 2:** The wavelength of violet light is greater than the light of other colours

44 Statement 1: The air bubble shines in water Statement 2: Air bubble in water shines due to refraction of light 45 Statement 1: The colour of the green flower seen through red glass appears to be dark Statement 2: Red glass transmits only red light 46 **Statement 1:** If the angles of the base of the prism are equal, then in the position of minimum deviation, the refracted ray will pass parallel to the base of prism Statement 2: In the case of minimum deviation, the angle of incidence is equal to the angle of emergence 47 Statement 1: The mirrors used in search lights are parabolic and not concave spherical. Statement 2: In a concave spherical mirror the image formed is always virtual. 48 Statement 1: Blue colour of sky appears due to scattering of blue colour Statement 2: Blue colour has shortest wave length in visible spectrum 49 Statement 1: The frequencies of incident, reflected and refracted beam of monochromatic light incident from one medium to another are same Statement 2: The incident, reflected and refracted rays are coplanar 50 Statement 1: There is no dispersion of light refracted through a rectangular glass slab Statement 2: Dispersion of light is the phenomenon of splitting of a beam of white light into its constituent colours 51 Statement 1: If a plane glass slab is placed on the letters of different colours all the letters appear to be raised up to the same height Statement 2: Different colours have different wavelengths

RAY OPTICS AND OPTICAL INSTRUMENTS

						: ANS	W	ER K	EY:) }					
1)	a	2)	a	3)	b	4)	d	29)	d	30)	A	31)	d	32)	c
5)	d	6)	d	7)	c	8)	a	33)	c	34)	a	35)	a	36)	d
9)	c	10)	c	11)	a	12)	a	37)	c	38)	b	39)	d	40)	d
13)	d	14)	C	15)	a	16)	b	41)	C	42)	b	43)	C	44)	c
17)	a	18)	b	19)	C	20)	d	45)	a	46)	a	47)	c	48)	a
21)	a	22)	а	23)	b	24)	c	49)	b	50)	b	51)	d		
25)	c	26)	c	27)	b	28)	b								

RAY OPTICS AND OPTICAL INSTRUMENTS

: HINTS AND SOLUTIONS :

1 (a)

Magnification produced by mirror $m = \frac{I}{o} = \frac{f}{f - u} = \frac{f}{x}$ *x* is distance from focus

2 (a)

Image formed by convex lens

4 (d)

The magnifying power of telescope in relaxed state is $m = \frac{f_0}{f_e}$

So, for high magnification, the focal length of objective length should be larger than of eye-piece

Resolving power of a telescope = $\frac{d}{1.22 \, \lambda}$

For high resolving power. Diameter (d) of objective should be higher

5 (d)

Focal length of the lens depends upon it's refractive index as $\frac{1}{f} \propto (\mu - 1)$

Since $\mu_b > \mu_r$ so $f_b < f_r$

Therefore, the focal length of a lens decreases when red light is replaced by blue light

6 (d

The air bubble would behave as a diverging lens, because refractive index of air is less than refractive index of glass. However, the geometrical shape of the air bubble shall resemble a double convex lens

(c)

The clouds consist of dust particles and water droplets. Their size is very large as compared to the wavelength of the incident light from the sun. So there is very little scattering of light. Hence the light which we receive through the clouds has all the colours of light. As a result of this, we receive almost white light. Therefore, the cloud are generally white

8 (a)

Reflection index of diamond w.r.t. liquid $_{l}\mu_{d} = \frac{1}{\sin c}$

$$\therefore \frac{\sqrt{6}}{\sqrt{3}} = \frac{1}{\sin C}$$

Or
$$\sin C = \frac{1}{\sqrt{2}} = \sin 45^\circ$$

$$\therefore C = 45^{\circ}$$

9 (c)

Polar caps receives almost the same amount of radiation as the equatorial plane. For the polar caps angle between sun rays and normal (to polar caps) tends to 90°. As per Lambert's cosine law, $E \propto \cos\theta$, therefore E is zero. For the equatorial plane, $\theta=0$ °, therefore E is maximum. Hence polar caps of earth are so cold. (where E is radiation received)

10 (c)

Very large apertures gives blurred images because of aberrations. By reducing the aperture the clear image is obtained and thus the sensitivity of camera increases. Also the focussing of object at different distance is achieved by slightly altering the separation of the lens from the film

11 (a)

For smaller diameter incident angle at A(i'') will be greater than critical angle to cause total internal reflection

12 (a)

Resolving power = $\frac{a}{1.22\lambda}$

13 (d)

If a mirror is placed in a medium other than air its focal length does not change as f=R/2, but for the lens

$$\frac{1}{f_a} = (_a n^g - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

and
$$\frac{1}{f_w} = (_w n^g - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

As $_w n^{\rm g} <_a n^{\rm g}$, hence focal length of lens in water increases. The refractive index of water is 4/3 and that of air is 1. Hence, $\mu_w > \mu_a$

14 (c)

Laws reflection can be applied to any type of surface.

15 **(a)**

We know that power of lens is a reciprocal of its focal length, hence

$$P = \frac{1}{f} = \frac{1}{\frac{50}{100}} = 2D$$

Since, lens is concave hence, its power will be 2D. If the objective is placed at infinity then

$$u = \infty, v = ?, f = 50 \text{ cm}$$

From the formula, $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

$$\frac{1}{v} - \frac{1}{\infty} = \frac{1}{-50}$$

$$v = -50 \text{ cm}$$

Thus, concave lens will form an image of the object at infinity at a distance of 50 cm

16 (b)

Diamond glitters brilliantly because light enters in diamond suffers total internal reflection. All the light entering in it comes out of diamond after number of reflections and so light is absorbed by it

18 **(b)**

The stars twinkle while the planets do not. It is due to variation in density of atmospheric layer. As the stars are very far and giving light continuously to us. So, the light coming from stars is found to change their intensity continuously. Hence they are seen twinkling. Also stars are much bigger in size than planets but it has nothing to deal with twinkling phenomenon

19 (c

After the removal of stimulus the image formed on retina is sustained up to 1/6 second

20 (d

We cannot interchange the objective and eye lens of a microscope to make a telescope. The reason is that the focal length of lenses in microscope are very small, of the order of mm or a few cm and the difference $(f_o - f_e)$ is very small, while the telescope objective have a very large focal length as compared to eye lens of microscope

21 (a)

In total internal reflection, 100% of incident light is reflected back into the same medium, and there is no loss of intensity, while in reflection from mirrors and refraction from lenses, there is always some loss of intensity. Therefore images formed by total internal reflection are much brighter than those formed by mirrors or lenses

22 (a)

When the sun is close to setting, refraction will effect the top part of the sun differently from the bottom half. The top half will radiate its image truly, while the bottom portion will send an apparent image. Since the bottom portion of sun is being seen through thicker, more dense atmosphere. The bottom image is being bent intensely and gives the impression of being squashed or "flattened" or elliptical shape

23 (b)

The velocity of light in a material medium depends upon it's colour (wavelength). If a ray of white light incident on a prism, then on emerging, the different colours are deviated through different angles

Also dispersive power $\omega = \frac{(\mu_V - \mu_R)}{(\mu_Y - 1)}$

i.e., ω depends upon only μ

24 (c)

The wavelength of wave associated with electron (de Broglie waves) is less than that of visible light. We know that resolving power is inversely proportional to wavelength of wave used in microscope. Therefore the resolving power of an electron microscope is higher than that of an optical microscope

26 (c)

The sun and its surroundings appears red during sunset or sunrise because of scattering of light. The amount of scattered light is inversely proportional to the fourth power of wavelength of light, i. e., $I \propto \frac{1}{14}$

27 (b)

The light gathering power (or brightness) of a telescope $\propto (diameter)^2$. So by increasing the objective diameter even far off stars may produce images of optimum brightness

30 (A)

The relation between angle of deviation δ for a thin prism, an angle of prism and refractive index of material of prism is given by $\delta = (\mu-1)A$

31 (d)

In air or water, a convex lens made of glass behaves as a convergent lens but when it is placed in carbon disulfide, it behaves as a divergent lens. Therefore, when a convergent lens is placed inside a transparent medium of refractive index greater than that of material of lens, it behave as a divergent lens.

It simply concludes that property of a lens whether the ray is diverging or converging depends on the surrounding medium

Owls can move freely during night, because they have large number of cones on their retina which help them to see in night

33 (c)

Using Huygen's eye-piece, measurements can be taken but not accurately due to the reason given.

34 (a)

Focal length of lens immersed in water is four times the focal length of lens in air. It means $f_{\omega}=4f_{a}=4\times10=40\;cm$

The efficiency of fluorescent tube is about 50 lumen/watt, whereas efficiency of electric bulb is about 12 lumen/watt. Thus for same

amount of electric energy consumed, the tube gives nearly 4 times more light than the filament

36 (d)

> The velocity of light of different colours (all wavelengths) is same in vacuum and $\mu \propto \frac{1}{2}$

37 (c)

> The ray of light incident on the water air interface suffers total internal reflections, in that case the angle of incidence is greater than the critical angle. Therefore, if the tube is viewed from suitable direction (so that the angle of incidence is greater than the critical angle), the rays of light incident on the tube undergoes total internal reflection. As a result, the test tube appears as highly polished i.e. silvery

38 (b)

We know that power of lens is a reciprocal of its focal length, hence $P = \frac{1}{f} = \frac{1}{\frac{50}{600}} = 2D$

Since, lens is concave hence, its power will be 2D. If the object is placed at infinity then

$$\mu = \infty, v = ?, f = 50 \text{ cm}$$

From the formula, $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

$$\frac{1}{v} - \frac{1}{\infty} = \frac{1}{-50}$$

$$v = -50 \text{ cm}$$

Thus, concave lens will form an image of the object at infinity at a distance of 50 cm.

39 (d)

We can produce a real image by plane or convex mirror

Focal length of convex mirror is taken positive

40 (d)

> It is not necessary for a material to have same colour in reflected and transmitted light. A material may reflect one colour strongly and transmit some other colour. For example, some lubricating oils reflect green colour and transmit

red. Therefore, in reflected light, they will appear green and in transmitted light, they will appear red

41 (c)

When glass surface is made rough, then light incident on it is scattered in different directions. Due to which its transparency decreases

There is no effect of roughness on absorption of light

43 **(c)** $\mu \propto \frac{1}{\lambda} \propto \frac{1}{c} . \ \lambda_V \ \text{is least so } C_V \ \text{is also least. Also the}$ greatest wavelength is for red colour

44 **(c)**Shining of air bubble in water is on account of total internal reflection

45 (a)
Red glass transmits only red light and absorbs all the colours of which light. Thus, when green flower is seen through red glass it absorbs the green colour, so it appears to be dark

46 **(a)**

In case of minimum deviation of a prism $\angle i = \angle e$

so $\angle r_1 = \angle r_2$

48 (a)

I (scattering of light) $\propto \frac{1}{\lambda^4}$, blue light has small wavelength and order of wavelength of blue light is nearly equal to size of scattered particle of sky and blue scattered most not violet even violet has smallest wavelength in visible spectrum

After refraction at two parallel faces of a glass slab, a ray of light emerges in a direction parallel to the direction of incidence of white light on the slab. As rays of all colours emerge in the same direction (of incidence of white light), hence there is no dispersion, but only lateral displacement

51 **(d)**Apparent shift for different coloured latter is $d = h\left(1 - \frac{1}{\mu}\right) \Rightarrow \lambda_R > \lambda_V \text{ so } \mu_R < \mu_V$ Hence $d_R < d_V$ i. e. red coloured letter raised least

RAY OPTICS AND OPTICAL INSTRUMENTS

Matrix-Match Type

This section contain(s) 0 question(s). Each question contains Statements given in 2 columns which have to be matched. Statements (A, B, C, D) in columns I have to be matched with Statements (p, q, r, s) in columns II.

Mat	ch List I w	rith List II a	and select	t the correct answ	er usir	ng the codes given below the lists	
		Co	olumn-I			Column- II	
(A)	An objec	t is placed	at focus	before a convex	(p)	Magnification is −∞	
(B)	An objec	t is placed		of curvature	(q)	Magnification is 0.5	
(C)				before a concave	(r)	Magnification is +1	
(D)	An objec	t is placed		(s)	Magnification is −1		
	before a	convex iii	11101		(t)	Magnification is 0.33	
COL	DES:						
	Α	В	C	D			
a)	В	d	a	e			
b)	a	d	c	b			
c)	C	b	a	e			
d)	b	e	d	С			

Match the List *I* with the List *II* from the combinations shown

Column-I Column-II (A) Presbyopia (p) Sphero-cylindrical lens (B) Hypermetropia (q) Convex lens of proper power may be used close do the eye (C) Astigmatism (r) Concave lens of suitable focal length (D) Myopia (s) Bifocal lens of suitable focal length CODES: A В C D

- a) d
- b) a
- c) d b C
- d) d a b
- Two transparent media of refractive indices μ_1 and μ_3 have a solid lens shaped transparent material of refractive index μ_2 between them as shown in figures in Column-II. A ray traversing these media is also shown in the figures. In column-I different relationships between μ_1, μ_2 and μ_3 are given. Match them to the ray diagrams shown in Column-II

Column-I

Column- II

(A)
$$\mu_1 < \mu_2$$

(B)
$$\mu_1 > \mu_2$$

(C)
$$\mu_2 = \mu_3$$

(D)
$$\mu_2 > \mu_3$$

(s)

CODES:

A В C D a) P,r q,s,t p,r,t q,s

- b) q,s,t p,r q,s p,r,t
- c) p,r,t q,s,t q,s p,r
- d) p,r,t q,s,t p,r
- A simple telescope used to view distant objects has eyepiece and objective lenses of focal lengths f_e and f_0 respectively. Then

Column-I

Column-II

- (A) Intensity of light received by lens
- (B) Angular magnification
- (C) Length of telescope
- (D) Sharpness of image
- CODES:
 - A В C D
- a) P,q,r p,b r
- b) p,b p,q,r
- c) p,b r p,q,r
- d) p,b p,q,r

- (p) Radius of aperture
- (q) Dispersion of lens
- Focal length of objective lens and eyepiece
- (s) Spherical aberration

An optical component and an object S placed along its optic axis are given in Column I. The distance between the object and the component can be varied. The properties of images are given in Column II. Match all the properties of images from Column II with the appropriate components given in Column I

Column-I

Column-II

- (B)
- (C)
- (D)

- (p) Real image
- (q) Virtual image
- Magnified image
- (s) Image at infinity

CODES:

- В C D A
- a) P,q,r p q r,s
- b) p,q,r,s q p,q,r,s p,q,r,s
- c) r,s p,q q p,q,r,s
- d) p,q p,q,r,s r,s q

RAY OPTICS AND OPTICAL INSTRUMENTS

: ANSWER KEY:

2) c 3) c | 5)

RAY OPTICS AND OPTICAL INSTRUMENTS

: HINTS AND SOLUTIONS :

$\begin{pmatrix} p \\ p \\ \end{pmatrix} \qquad \qquad \mu_3 \qquad \mu_2 \qquad \mu_1$	$\mu_2 = \mu_3$ As there is no deviation. As the light bends towards normal in denser medium $\mu_2 > \mu_1$ $p \rightarrow A$ and C
(q)	As light bends away from normal $\mu_2 < \mu_1$ and $\mu_3 < \mu_2$

(r)	μ_3 μ_2 μ_1	$\mu_2 = \mu_3$ (As no deviation) $\mu_2 > \mu_1$ (As light bends – towards normal) $r \rightarrow C$ and A
(s)	μ_3 μ_2 μ_1	$\mu_2 < \mu_1$ $\mu_3 < \mu_2$ As light bends away from normal $s \rightarrow B$ and D
(t)	μ_3 μ_2 μ_1	$\mu_2 = \mu_3$ As no deviation of light $\mu_2 < \mu_1$ As light bends away from normal $t \rightarrow C$ and B